BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 22632101)

  • 1. Preparation of supercapacitor electrodes through selection of graphene surface functionalities.
    Lai L; Yang H; Wang L; Teh BK; Zhong J; Chou H; Chen L; Chen W; Shen Z; Ruoff RS; Lin J
    ACS Nano; 2012 Jul; 6(7):5941-51. PubMed ID: 22632101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of graphene oxide on the properties of its composite with polyaniline.
    Wang H; Hao Q; Yang X; Lu L; Wang X
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):821-8. PubMed ID: 20356287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable Preparation of Polyaniline-Graphene Nanocomposites using Functionalized Graphene for Supercapacitor Electrodes.
    Liu X; Zheng Y; Wang X
    Chemistry; 2015 Jul; 21(29):10408-15. PubMed ID: 26073447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.
    Sekar P; Anothumakkool B; Kurungot S
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7661-9. PubMed ID: 25783045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications.
    Fan W; Zhang C; Tjiu WW; Pramoda KP; He C; Liu T
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3382-91. PubMed ID: 23517224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor.
    Yu P; Li Y; Zhao X; Wu L; Zhang Q
    Langmuir; 2014 May; 30(18):5306-13. PubMed ID: 24761945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline.
    Lei Z; Sun X; Wang H; Liu Z; Zhao XS
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7501-8. PubMed ID: 23848251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites.
    Wang Y; Tang S; Vongehr S; Syed JA; Wang X; Meng X
    Sci Rep; 2016 Feb; 6():12883. PubMed ID: 26883179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode.
    Lv P; Tang X; Zheng R; Ma X; Yu K; Wei W
    Nanoscale Res Lett; 2017 Dec; 12(1):630. PubMed ID: 29260343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.
    Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor.
    Li Y; Zhao X; Yu P; Zhang Q
    Langmuir; 2013 Jan; 29(1):493-500. PubMed ID: 23205664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films.
    Cho S; Shin KH; Jang J
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9186-93. PubMed ID: 24032539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.
    Ren L; Zhang G; Yan Z; Kang L; Xu H; Shi F; Lei Z; Liu ZH
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28294-302. PubMed ID: 26645314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.
    Hu L; Tu J; Jiao S; Hou J; Zhu H; Fray DJ
    Phys Chem Chem Phys; 2012 Dec; 14(45):15652-6. PubMed ID: 23076399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization.
    Okhay O; Tkach A
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors.
    Ates M; El-Kady M; Kaner RB
    Nanotechnology; 2018 Apr; 29(17):175402. PubMed ID: 29424710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene.
    Zhang D; Zhang X; Chen Y; Wang C; Ma Y; Dong H; Jiang L; Meng Q; Hu W
    Phys Chem Chem Phys; 2012 Aug; 14(31):10899-903. PubMed ID: 22772748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.