These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 22632405)
1. Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Ryan MH; Tibbett M; Edmonds-Tibbett T; Suriyagoda LD; Lambers H; Cawthray GR; Pang J Plant Cell Environ; 2012 Dec; 35(12):2170-80. PubMed ID: 22632405 [TBL] [Abstract][Full Text] [Related]
2. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Nazeri NK; Lambers H; Tibbett M; Ryan MH Plant Cell Environ; 2014 Apr; 37(4):911-21. PubMed ID: 24112081 [TBL] [Abstract][Full Text] [Related]
3. Intraspecific ploidy variation: A hidden, minor player in plant-soil-mycorrhizal fungi interactions. Sudová R; Pánková H; Rydlová J; Münzbergová Z; Suda J Am J Bot; 2014 Jan; 101(1):26-33. PubMed ID: 24388962 [TBL] [Abstract][Full Text] [Related]
4. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude. Khan MH; Meghvansi MK; Gupta R; Veer V J Plant Physiol; 2015 Sep; 189():105-12. PubMed ID: 26555273 [TBL] [Abstract][Full Text] [Related]
5. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Zhu YG; Smith FA; Smith SE Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831 [TBL] [Abstract][Full Text] [Related]
6. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Rapparini F; Llusià J; Peñuelas J Plant Biol (Stuttg); 2008 Jan; 10(1):108-22. PubMed ID: 18211551 [TBL] [Abstract][Full Text] [Related]
7. Aluminium-phosphate interactions in the rhizosphere of two bean species: Phaseolus lunatus L. and Phaseolus vulgaris L. Mimmo T; Ghizzi M; Cesco S; Tomasi N; Pinton R; Puschenreiter M J Sci Food Agric; 2013 Dec; 93(15):3891-6. PubMed ID: 24037763 [TBL] [Abstract][Full Text] [Related]
8. Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root. Mohammad MJ; Pan WL; Kennedy AC Mycorrhiza; 2005 Jun; 15(4):259-66. PubMed ID: 15503187 [TBL] [Abstract][Full Text] [Related]
9. Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability. Huang G; Hayes PE; Ryan MH; Pang J; Lambers H Oecologia; 2017 Nov; 185(3):387-400. PubMed ID: 28924626 [TBL] [Abstract][Full Text] [Related]
10. Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Lendenmann M; Thonar C; Barnard RL; Salmon Y; Werner RA; Frossard E; Jansa J Mycorrhiza; 2011 Nov; 21(8):689-702. PubMed ID: 21472448 [TBL] [Abstract][Full Text] [Related]
12. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics. Akhtar MS; Oki Y; Adachi T J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224 [TBL] [Abstract][Full Text] [Related]
13. A novel plant-fungus symbiosis benefits the host without forming mycorrhizal structures. Kariman K; Barker SJ; Jost R; Finnegan PM; Tibbett M New Phytol; 2014 Mar; 201(4):1413-1422. PubMed ID: 24279681 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Andrade SA; Silveira AP; Mazzafera P Sci Total Environ; 2010 Oct; 408(22):5381-91. PubMed ID: 20716461 [TBL] [Abstract][Full Text] [Related]
15. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Chen B; Xiao X; Zhu YG; Smith FA; Xie ZM; Smith SE Sci Total Environ; 2007 Jul; 379(2-3):226-34. PubMed ID: 17157359 [TBL] [Abstract][Full Text] [Related]
16. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Alvarez M; Huygens D; Olivares E; Saavedra I; Alberdi M; Valenzuela E Physiol Plant; 2009 Aug; 136(4):426-36. PubMed ID: 19470091 [TBL] [Abstract][Full Text] [Related]
17. Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Argüello A; O'Brien MJ; van der Heijden MG; Wiemken A; Schmid B; Niklaus PA Ecol Lett; 2016 Jun; 19(6):648-56. PubMed ID: 27074533 [TBL] [Abstract][Full Text] [Related]
18. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chen X; Wu C; Tang J; Hu S Chemosphere; 2005 Jul; 60(5):665-71. PubMed ID: 15963805 [TBL] [Abstract][Full Text] [Related]
19. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. Olsson PA; Rahm J; Aliasgharzad N FEMS Microbiol Ecol; 2010 Apr; 72(1):125-31. PubMed ID: 20459516 [TBL] [Abstract][Full Text] [Related]
20. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. Munier-Lamy C; Deneux-Mustin S; Mustin C; Merlet D; Berthelin J; Leyval C J Environ Radioact; 2007; 97(2-3):148-58. PubMed ID: 17544553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]