These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 22632405)
21. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration. Wasaki J; Rothe A; Kania A; Neumann G; Römheld V; Shinano T; Osaki M; Kandeler E J Environ Qual; 2005; 34(6):2157-66. PubMed ID: 16275716 [TBL] [Abstract][Full Text] [Related]
22. Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. Pedone-Bonfim MV; Lins MA; Coelho IR; Santana AS; Silva FS; Maia LC J Sci Food Agric; 2013 Apr; 93(6):1479-84. PubMed ID: 23108717 [TBL] [Abstract][Full Text] [Related]
24. Response of Eucalyptus tereticornis to inoculation with indigenous AM fungi in a semiarid alfisol achieved with different concentrations of available soil P. Sharma MP; Adholeya A Microbiol Res; 2000 Mar; 154(4):349-54. PubMed ID: 10772157 [TBL] [Abstract][Full Text] [Related]
25. Arbuscular Mycorrhizal Fungi Enhance Sea Buckthorn Growth in Coal Mining Subsidence Areas in Northwest China. Zhang Y; Bi Y; Shen H; Zhang L J Microbiol Biotechnol; 2020 Jun; 30(6):848-855. PubMed ID: 32238763 [TBL] [Abstract][Full Text] [Related]
26. The Interaction of Arbuscular Mycorrhizal Fungi and Phosphorus Inputs on Selenium Uptake by Alfalfa ( Peng Q; Wu M; Zhang Z; Su R; He H; Zhang X Front Plant Sci; 2020; 11():966. PubMed ID: 32676094 [TBL] [Abstract][Full Text] [Related]
27. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Alarcón A; Davies FT; Egilla JN; Fox TC; Estrada-Luna AA; Ferrera-Cerrato R Rev Latinoam Microbiol; 2002; 44(1):31-7. PubMed ID: 17061513 [TBL] [Abstract][Full Text] [Related]
28. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. Wen Z; Li H; Shen Q; Tang X; Xiong C; Li H; Pang J; Ryan MH; Lambers H; Shen J New Phytol; 2019 Jul; 223(2):882-895. PubMed ID: 30932187 [TBL] [Abstract][Full Text] [Related]
29. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Hoeksema JD; Chaudhary VB; Gehring CA; Johnson NC; Karst J; Koide RT; Pringle A; Zabinski C; Bever JD; Moore JC; Wilson GW; Klironomos JN; Umbanhowar J Ecol Lett; 2010 Mar; 13(3):394-407. PubMed ID: 20100237 [TBL] [Abstract][Full Text] [Related]
31. [Effect of elevated O3 on rhizosphere microorganisms of two genotypes of snap bean]. Wang SG; Gong WL; Wang XK; Diao XJ Huan Jing Ke Xue; 2011 Oct; 32(10):3033-9. PubMed ID: 22279920 [TBL] [Abstract][Full Text] [Related]
32. Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. Welling MT; Liu L; Rose TJ; Waters DL; Benkendorff K Plant Biol (Stuttg); 2016 Jul; 18(4):552-62. PubMed ID: 26499392 [TBL] [Abstract][Full Text] [Related]
33. Inoculation of field-established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium. Mamatha G; Bagyaraj DJ; Jaganath S Mycorrhiza; 2002 Dec; 12(6):313-6. PubMed ID: 12466919 [TBL] [Abstract][Full Text] [Related]
34. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Smith SE; Smith FA Mycologia; 2012; 104(1):1-13. PubMed ID: 21933929 [TBL] [Abstract][Full Text] [Related]
35. Arbuscular mycorrhizal symbiosis can counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a sahelian soil. Kisa M; Sanon A; Thioulouse J; Assigbetse K; Sylla S; Spichiger R; Dieng L; Berthelin J; Prin Y; Galiana A; Lepage M; Duponnois R FEMS Microbiol Ecol; 2007 Oct; 62(1):32-44. PubMed ID: 17714498 [TBL] [Abstract][Full Text] [Related]
36. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Branscheid A; Sieh D; Pant BD; May P; Devers EA; Elkrog A; Schauser L; Scheible WR; Krajinski F Mol Plant Microbe Interact; 2010 Jul; 23(7):915-26. PubMed ID: 20521954 [TBL] [Abstract][Full Text] [Related]
37. Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime. Hu J; Lin X; Wang J; Cui X; Dai J; Chu H; Zhang J Appl Microbiol Biotechnol; 2010 Oct; 88(3):781-7. PubMed ID: 20683717 [TBL] [Abstract][Full Text] [Related]
38. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Rabie GH Mycorrhiza; 2005 May; 15(3):225-30. PubMed ID: 15765207 [TBL] [Abstract][Full Text] [Related]
39. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Vivas A; Biró B; Ruíz-Lozano JM; Barea JM; Azcón R Chemosphere; 2006 Mar; 62(9):1523-33. PubMed ID: 16098559 [TBL] [Abstract][Full Text] [Related]
40. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. Lingfei L; Anna Y; Zhiwei Z FEMS Microbiol Ecol; 2005 Nov; 54(3):367-73. PubMed ID: 16332334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]