BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22632544)

  • 41. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes.
    Murray AR; Kisin E; Leonard SS; Young SH; Kommineni C; Kagan VE; Castranova V; Shvedova AA
    Toxicology; 2009 Mar; 257(3):161-71. PubMed ID: 19150385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cells take up and recover from protein-stabilized single-wall carbon nanotubes with two distinct rates.
    Holt BD; Dahl KN; Islam MF
    ACS Nano; 2012 Apr; 6(4):3481-90. PubMed ID: 22458848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cytotoxic effect of poly-dispersed single walled carbon nanotubes on erythrocytes in vitro and in vivo.
    Sachar S; Saxena RK
    PLoS One; 2011; 6(7):e22032. PubMed ID: 21818289
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Uptake and intracellular distribution of collagen-functionalized single-walled carbon nanotubes.
    Mao H; Kawazoe N; Chen G
    Biomaterials; 2013 Mar; 34(10):2472-9. PubMed ID: 23332322
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct imaging of single-walled carbon nanotubes in cells.
    Porter AE; Gass M; Muller K; Skepper JN; Midgley PA; Welland M
    Nat Nanotechnol; 2007 Nov; 2(11):713-7. PubMed ID: 18654411
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes.
    Wang G; Dewilde AH; Zhang J; Pal A; Vashist M; Bello D; Marx KA; Braunhut SJ; Therrien JM
    Part Fibre Toxicol; 2011 Jan; 8():4. PubMed ID: 21266033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation.
    Park EJ; Hong YS; Lee BS; Yoon C; Jeong U; Kim Y
    Environ Res; 2016 Jul; 148():184-195. PubMed ID: 27078092
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants.
    Pulskamp K; Diabaté S; Krug HF
    Toxicol Lett; 2007 Jan; 168(1):58-74. PubMed ID: 17141434
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro nanotoxicity of single-walled carbon nanotube-dendrimer nanocomplexes against murine myoblast cells.
    Cancino J; Paino IM; Micocci KC; Selistre-de-Araujo HS; Zucolotto V
    Toxicol Lett; 2013 May; 219(1):18-25. PubMed ID: 23454831
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos.
    Boyles MS; Young L; Brown DM; MacCalman L; Cowie H; Moisala A; Smail F; Smith PJ; Proudfoot L; Windle AH; Stone V
    Toxicol In Vitro; 2015 Oct; 29(7):1513-28. PubMed ID: 26086123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physical properties of single-wall carbon nanotubes in cell culture and their dispersal due to alveolar epithelial cell response.
    Fujita K; Fukuda M; Endoh S; Kato H; Maru J; Nakamura A; Uchino K; Shinohara N; Obara S; Nagano R; Horie M; Kinugasa S; Hashimoto H; Kishimoto A
    Toxicol Mech Methods; 2013 Oct; 23(8):598-609. PubMed ID: 23742690
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alternative estimation of human exposure of single-walled carbon nanotubes using three-dimensional tissue-engineered human lung.
    Stoker E; Purser F; Kwon S; Park YB; Lee JS
    Int J Toxicol; 2008 Nov; 27(6):441-8. PubMed ID: 19482823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of single-wall carbon nanotubes in human cells of the oral cavity: geno-cytotoxic risk.
    Cicchetti R; Divizia M; Valentini F; Argentin G
    Toxicol In Vitro; 2011 Dec; 25(8):1811-9. PubMed ID: 21968257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Water soluble multi-walled carbon nanotubes enhance peritoneal macrophage activity in vivo.
    Deng X; Xiong D; Wang Y; Chen W; Luan Q; Zhang H; Jiao Z; Wu M
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8663-9. PubMed ID: 21121380
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insight into the Mechanisms of Combined Toxicity of Single-Walled Carbon Nanotubes and Nickel Ions in Macrophages: Role of P2X
    Cui X; Wan B; Guo LH; Yang Y; Ren X
    Environ Sci Technol; 2016 Nov; 50(22):12473-12483. PubMed ID: 27750000
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Albumin reduces thrombogenic potential of single-walled carbon nanotubes.
    Vakhrusheva TV; Gusev AA; Gusev SA; Vlasova II
    Toxicol Lett; 2013 Aug; 221(2):137-45. PubMed ID: 23747415
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Miltefosine enhances phagocytosis but decreases nitric oxide production by peritoneal macrophages of C57BL/6 mice.
    Ponte CB; Alves EA; Sampaio RN; Urdapilleta AA; Kückelhaus Cdos S; Muniz-Junqueira MI; Kückelhaus SA
    Int Immunopharmacol; 2012 May; 13(1):114-9. PubMed ID: 22465961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation and cellular uptake of pH-dependent fluorescent single-wall carbon nanotubes.
    Zhang X; Meng L; Wang X; Lu Q
    Chemistry; 2010 Jan; 16(2):556-61. PubMed ID: 19894228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective loss of younger erythrocytes from blood circulation and changes in erythropoietic patterns in bone marrow and spleen in mouse anemia induced by poly-dispersed single-walled carbon nanotubes.
    Bhardwaj N; Saxena RK
    Nanotoxicology; 2015; 9(8):1032-40. PubMed ID: 25831400
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-walled carbon nanotubes injure the plasma membrane of macrophages.
    Hirano S; Kanno S; Furuyama A
    Toxicol Appl Pharmacol; 2008 Oct; 232(2):244-51. PubMed ID: 18655803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.