BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22633058)

  • 1. Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes.
    Fauque GD; Barton LL
    Adv Microb Physiol; 2012; 60():1-90. PubMed ID: 22633058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer.
    Mussmann M; Richter M; Lombardot T; Meyerdierks A; Kuever J; Kube M; Glöckner FO; Amann R
    J Bacteriol; 2005 Oct; 187(20):7126-37. PubMed ID: 16199583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic basis for assimilatory and dissimilatory sulfate reduction.
    PECK HD
    J Bacteriol; 1961 Dec; 82(6):933-9. PubMed ID: 14484818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of sulfate-reducing prokaryotes.
    Hansen TA
    Antonie Van Leeuwenhoek; 1994; 66(1-3):165-85. PubMed ID: 7747930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway.
    Fishbain S; Dillon JG; Gough HL; Stahl DA
    Appl Environ Microbiol; 2003 Jun; 69(6):3663-7. PubMed ID: 12788778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation.
    Santos AA; Venceslau SS; Grein F; Leavitt WD; Dahl C; Johnston DT; Pereira IA
    Science; 2015 Dec; 350(6267):1541-5. PubMed ID: 26680199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationship in hemoproteins: the role of cytochrome c3 in the reduction of colloidal sulfur by sulfate-reducing bacteria.
    Fauque G; Herve D; Le Gall J
    Arch Microbiol; 1979 Jun; 121(3):261-4. PubMed ID: 229785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology and genetics of sulfur-oxidizing bacteria.
    Friedrich CG
    Adv Microb Physiol; 1998; 39():235-89. PubMed ID: 9328649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium".
    Zecchin S; Mueller RC; Seifert J; Stingl U; Anantharaman K; von Bergen M; Cavalca L; Pester M
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247059
    [No Abstract]   [Full Text] [Related]  

  • 11. Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery.
    Johnson DB; Sánchez-Andrea I
    Adv Microb Physiol; 2019; 75():205-231. PubMed ID: 31655738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.
    Kletzin A; Urich T; Müller F; Bandeiras TM; Gomes CM
    J Bioenerg Biomembr; 2004 Feb; 36(1):77-91. PubMed ID: 15168612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hyperthermophilic bacterium Aquifex aeolicus: from respiratory pathways to extremely resistant enzymes and biotechnological applications.
    Guiral M; Prunetti L; Aussignargues C; Ciaccafava A; Infossi P; Ilbert M; Lojou E; Giudici-Orticoni MT
    Adv Microb Physiol; 2012; 61():125-94. PubMed ID: 23046953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications.
    Schut GJ; Boyd ES; Peters JW; Adams MW
    FEMS Microbiol Rev; 2013 Mar; 37(2):182-203. PubMed ID: 22713092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant sulfur metabolism--the reduction of sulfate to sulfite.
    Bick JA; Leustek T
    Curr Opin Plant Biol; 1998 Jun; 1(3):240-4. PubMed ID: 10066588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus.
    Boughanemi S; Lyonnet J; Infossi P; Bauzan M; Kosta A; Lignon S; Giudici-Orticoni MT; Guiral M
    FEMS Microbiol Lett; 2016 Aug; 363(15):. PubMed ID: 27284018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-coupling mechanisms in chemolithotrophic bacteria.
    Peck HD
    Annu Rev Microbiol; 1968; 22():489-518. PubMed ID: 4972376
    [No Abstract]   [Full Text] [Related]  

  • 19. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea.
    Ghosh W; Dam B
    FEMS Microbiol Rev; 2009 Nov; 33(6):999-1043. PubMed ID: 19645821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774)--a heterooligomer heme protein with sulfite reductase activity.
    Pereira IC; Abreu IA; Xavier AV; LeGall J; Teixeira M
    Biochem Biophys Res Commun; 1996 Jul; 224(3):611-8. PubMed ID: 8713097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.