These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 22633061)

  • 1. Redox biology of tuberculosis pathogenesis.
    Trivedi A; Singh N; Bhat SA; Gupta P; Kumar A
    Adv Microb Physiol; 2012; 60():263-324. PubMed ID: 22633061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of redox sensing in Mycobacterium tuberculosis.
    Bhat SA; Singh N; Trivedi A; Kansal P; Gupta P; Kumar A
    Free Radic Biol Med; 2012 Oct; 53(8):1625-41. PubMed ID: 22921590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive Stress: New Insights in Physiology and Drug Tolerance of
    Mavi PS; Singh S; Kumar A
    Antioxid Redox Signal; 2020 Jun; 32(18):1348-1366. PubMed ID: 31621379
    [No Abstract]   [Full Text] [Related]  

  • 4. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor.
    Kumar A; Toledo JC; Patel RP; Lancaster JR; Steyn AJ
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11568-73. PubMed ID: 17609369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response.
    Singh A; Crossman DK; Mai D; Guidry L; Voskuil MI; Renfrow MB; Steyn AJ
    PLoS Pathog; 2009 Aug; 5(8):e1000545. PubMed ID: 19680450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): Structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol.
    Kumar A; Balakrishna AM; Nartey W; Manimekalai MSS; Grüber G
    Free Radic Biol Med; 2016 Aug; 97():588-601. PubMed ID: 27417938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis.
    Pacl HT; Reddy VP; Saini V; Chinta KC; Steyn AJC
    Pathog Dis; 2018 Jul; 76(5):. PubMed ID: 29873719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Physiology and Genetics of Oxidative Stress in Mycobacteria.
    Cumming BM; Lamprecht DA; Wells RM; Saini V; Mazorodze JH; Steyn AJC
    Microbiol Spectr; 2014 Jun; 2(3):. PubMed ID: 26103972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo.
    Chawla M; Parikh P; Saxena A; Munshi M; Mehta M; Mai D; Srivastava AK; Narasimhulu KV; Redding KE; Vashi N; Kumar D; Steyn AJ; Singh A
    Mol Microbiol; 2012 Sep; 85(6):1148-65. PubMed ID: 22780904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox homeostasis in mycobacteria: the key to tuberculosis control?
    Kumar A; Farhana A; Guidry L; Saini V; Hondalus M; Steyn AJ
    Expert Rev Mol Med; 2011 Dec; 13():e39. PubMed ID: 22172201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterium tuberculosis WhiB3: a novel iron-sulfur cluster protein that regulates redox homeostasis and virulence.
    Saini V; Farhana A; Steyn AJ
    Antioxid Redox Signal; 2012 Apr; 16(7):687-97. PubMed ID: 22010944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive stress in microbes: implications for understanding Mycobacterium tuberculosis disease and persistence.
    Farhana A; Guidry L; Srivastava A; Singh A; Hondalus MK; Steyn AJ
    Adv Microb Physiol; 2010; 57():43-117. PubMed ID: 21078441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide.
    Tyagi P; Dharmaraja AT; Bhaskar A; Chakrapani H; Singh A
    Free Radic Biol Med; 2015 Jul; 84():344-354. PubMed ID: 25819161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [SENSORS IN MYCOBACTERIA FOR THE DETECTION OF REDOX STRESS].
    Takii T
    Kekkaku; 2015 Jul; 90(7):579-91. PubMed ID: 26630729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis.
    Saini V; Cumming BM; Guidry L; Lamprecht DA; Adamson JH; Reddy VP; Chinta KC; Mazorodze JH; Glasgow JN; Richard-Greenblatt M; Gomez-Velasco A; Bach H; Av-Gay Y; Eoh H; Rhee K; Steyn AJC
    Cell Rep; 2016 Jan; 14(3):572-585. PubMed ID: 26774486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence.
    Smith LJ; Bochkareva A; Rolfe MD; Hunt DM; Kahramanoglou C; Braun Y; Rodgers A; Blockley A; Coade S; Lougheed KEA; Hafneh NA; Glenn SM; Crack JC; Le Brun NE; Saldanha JW; Makarov V; Nobeli I; Arnvig K; Mukamolova GV; Buxton RS; Green J
    Nucleic Acids Res; 2017 Jun; 45(11):6600-6612. PubMed ID: 28482027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst.
    Ng VH; Cox JS; Sousa AO; MacMicking JD; McKinney JD
    Mol Microbiol; 2004 Jun; 52(5):1291-302. PubMed ID: 15165233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening Mycobacterium tuberculosis Secreted Proteins Identifies Mpt64 as a Eukaryotic Membrane-Binding Bacterial Effector.
    Stamm CE; Pasko BL; Chaisavaneeyakorn S; Franco LH; Nair VR; Weigele BA; Alto NM; Shiloh MU
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31167949
    [No Abstract]   [Full Text] [Related]  

  • 19. Reengineering redox sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection.
    Bhaskar A; Chawla M; Mehta M; Parikh P; Chandra P; Bhave D; Kumar D; Carroll KS; Singh A
    PLoS Pathog; 2014 Jan; 10(1):e1003902. PubMed ID: 24497832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spectroelectrochemical investigation of the heme-based sensor DevS from Mycobacterium tuberculosis: a redox versus oxygen sensor.
    Barreto GA; Carepo MSP; Gondim ACS; Guimarães WG; Lopes LGF; Bernhardt PV; Paulo TF; Sousa EHS; Diógenes ICN
    FEBS J; 2019 Nov; 286(21):4278-4293. PubMed ID: 31254441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.