These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22633124)

  • 1. Proteomics reveals evidence of cross-talk between protein modifications in bacteria: focus on acetylation and phosphorylation.
    Soufi B; Soares NC; Ravikumar V; Macek B
    Curr Opin Microbiol; 2012 Jun; 15(3):357-63. PubMed ID: 22633124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of phosphoproteomics on studies of bacterial physiology.
    Mijakovic I; Macek B
    FEMS Microbiol Rev; 2012 Jul; 36(4):877-92. PubMed ID: 22091997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific analysis of bacterial phosphoproteomes.
    Macek B; Mijakovic I
    Proteomics; 2011 Aug; 11(15):3002-11. PubMed ID: 21726046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global phosphoproteomic analysis reveals diverse functions of serine/threonine/tyrosine phosphorylation in the model cyanobacterium Synechococcus sp. strain PCC 7002.
    Yang MK; Qiao ZX; Zhang WY; Xiong Q; Zhang J; Li T; Ge F; Zhao JD
    J Proteome Res; 2013 Apr; 12(4):1909-23. PubMed ID: 23461524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein phosphorylation in bacterial signal transduction.
    Kobir A; Shi L; Boskovic A; Grangeasse C; Franjevic D; Mijakovic I
    Biochim Biophys Acta; 2011 Oct; 1810(10):989-94. PubMed ID: 21266190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein lysine acetylation in bacteria: Current state of the art.
    Ouidir T; Kentache T; Hardouin J
    Proteomics; 2016 Jan; 16(2):301-9. PubMed ID: 26390373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence.
    Misra SK; Milohanic E; Aké F; Mijakovic I; Deutscher J; Monnet V; Henry C
    Proteomics; 2011 Nov; 11(21):4155-65. PubMed ID: 21956863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological significance of protein modifications in aging and calorie restriction.
    Nakamura A; Kawakami K; Kametani F; Nakamoto H; Goto S
    Ann N Y Acad Sci; 2010 Jun; 1197():33-9. PubMed ID: 20536830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylation modulates the STAT signaling code.
    Wieczorek M; Ginter T; Brand P; Heinzel T; Krämer OH
    Cytokine Growth Factor Rev; 2012 Dec; 23(6):293-305. PubMed ID: 22795479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks.
    Jers C; Soufi B; Grangeasse C; Deutscher J; Mijakovic I
    Expert Rev Proteomics; 2008 Aug; 5(4):619-27. PubMed ID: 18761471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation.
    Cousin C; Derouiche A; Shi L; Pagot Y; Poncet S; Mijakovic I
    FEMS Microbiol Lett; 2013 Sep; 346(1):11-9. PubMed ID: 23731382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae.
    Sun X; Ge F; Xiao CL; Yin XF; Ge R; Zhang LH; He QY
    J Proteome Res; 2010 Jan; 9(1):275-82. PubMed ID: 19894762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications.
    Shah B; Kozlowski RL; Han J; Borchers CH
    Methods Mol Biol; 2011; 773():259-303. PubMed ID: 21898261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein acetylation in prokaryotes.
    Jones JD; O'Connor CD
    Proteomics; 2011 Aug; 11(15):3012-22. PubMed ID: 21674803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The current state of microbial proteomics: where we are and where we want to go.
    Chao TC; Hansmeier N
    Proteomics; 2012 Feb; 12(4-5):638-50. PubMed ID: 22246737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology.
    Grangeasse C; Cozzone AJ; Deutscher J; Mijakovic I
    Trends Biochem Sci; 2007 Feb; 32(2):86-94. PubMed ID: 17208443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting posttranslational modifications of bacterial SSB proteins.
    Vujaklija D; Macek B
    Methods Mol Biol; 2012; 922():205-18. PubMed ID: 22976189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphorylation on tyrosine in bacteria.
    Cozzone AJ; Grangeasse C; Doublet P; Duclos B
    Arch Microbiol; 2004 Mar; 181(3):171-81. PubMed ID: 14745484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the diversity of protein modifications: special bacterial phosphorylation systems.
    Mijakovic I; Grangeasse C; Turgay K
    FEMS Microbiol Rev; 2016 May; 40(3):398-417. PubMed ID: 26926353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.