These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22633124)

  • 21. Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens.
    Cozzone AJ
    J Mol Microbiol Biotechnol; 2005; 9(3-4):198-213. PubMed ID: 16415593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey.
    Falb M; Aivaliotis M; Garcia-Rizo C; Bisle B; Tebbe A; Klein C; Konstantinidis K; Siedler F; Pfeiffer F; Oesterhelt D
    J Mol Biol; 2006 Oct; 362(5):915-24. PubMed ID: 16950390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond gene expression: the impact of protein post-translational modifications in bacteria.
    Cain JA; Solis N; Cordwell SJ
    J Proteomics; 2014 Jan; 97():265-86. PubMed ID: 23994099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ser/Thr/Tyr protein phosphorylation in bacteria - for long time neglected, now well established.
    Deutscher J; Saier MH
    J Mol Microbiol Biotechnol; 2005; 9(3-4):125-31. PubMed ID: 16415586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-coverage proteome analysis reveals the first insight of protein modification systems in the pathogenic spirochete Leptospira interrogans.
    Cao XJ; Dai J; Xu H; Nie S; Chang X; Hu BY; Sheng QH; Wang LS; Ning ZB; Li YX; Guo XK; Zhao GP; Zeng R
    Cell Res; 2010 Feb; 20(2):197-210. PubMed ID: 19918266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted large-scale analysis of protein acetylation.
    Mischerikow N; Heck AJ
    Proteomics; 2011 Feb; 11(4):571-89. PubMed ID: 21246731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A newly discovered post-translational modification--the acetylation of serine and threonine residues.
    Mukherjee S; Hao YH; Orth K
    Trends Biochem Sci; 2007 May; 32(5):210-6. PubMed ID: 17412595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lysine acetylation targets protein complexes and co-regulates major cellular functions.
    Choudhary C; Kumar C; Gnad F; Nielsen ML; Rehman M; Walther TC; Olsen JV; Mann M
    Science; 2009 Aug; 325(5942):834-40. PubMed ID: 19608861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.
    Lee DW; Kim D; Lee YJ; Kim JA; Choi JY; Kang S; Pan JG
    Proteomics; 2013 Aug; 13(15):2278-82. PubMed ID: 23696451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes.
    Bechet E; Guiral S; Torres S; Mijakovic I; Cozzone AJ; Grangeasse C
    Amino Acids; 2009 Sep; 37(3):499-507. PubMed ID: 19189200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes.
    Christensen DG; Baumgartner JT; Xie X; Jew KM; Basisty N; Schilling B; Kuhn ML; Wolfe AJ
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights from site-specific phosphoproteomics in bacteria.
    Soufi B; Jers C; Hansen ME; Petranovic D; Mijakovic I
    Biochim Biophys Acta; 2008 Jan; 1784(1):186-92. PubMed ID: 17881301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping protein post-translational modifications with mass spectrometry.
    Witze ES; Old WM; Resing KA; Ahn NG
    Nat Methods; 2007 Oct; 4(10):798-806. PubMed ID: 17901869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of bacterial physiology by lysine acetylation of proteins.
    Bernal V; Castaño-Cerezo S; Gallego-Jara J; Écija-Conesa A; de Diego T; Iborra JL; Cánovas M
    N Biotechnol; 2014 Dec; 31(6):586-95. PubMed ID: 24636882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology.
    Lacerda CM; Reardon KF
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):75-87. PubMed ID: 19279070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability.
    Caron C; Boyault C; Khochbin S
    Bioessays; 2005 Apr; 27(4):408-15. PubMed ID: 15770681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein acetylation mechanisms in the regulation of insulin and insulin-like growth factor 1 signalling.
    Pirola L; Zerzaihi O; Vidal H; Solari F
    Mol Cell Endocrinol; 2012 Oct; 362(1-2):1-10. PubMed ID: 22683437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A glimpse into the modulation of post-translational modifications of human-colonizing bacteria.
    Bastos PAD; da Costa JP; Vitorino R
    J Proteomics; 2017 Jan; 152():254-275. PubMed ID: 27888141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomics.
    Stults JT; Arnott D
    Methods Enzymol; 2005; 402():245-89. PubMed ID: 16401512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.