These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22633626)

  • 1. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer.
    Tang SY; Shridharan P; Sivakumar M
    Ultrason Sonochem; 2013 Jan; 20(1):485-97. PubMed ID: 22633626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation.
    Tang SY; Manickam S; Wei TK; Nashiru B
    Ultrason Sonochem; 2012 Mar; 19(2):330-45. PubMed ID: 21835676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers.
    Bai L; McClements DJ
    J Colloid Interface Sci; 2016 Mar; 466():206-12. PubMed ID: 26724703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of osmotic pressure and gelling in the generation of highly stable single core water-in-oil-in-water (W/O/W) nano multiple emulsions of aspirin assisted by two-stage ultrasonic cavitational emulsification.
    Tang SY; Sivakumar M; Nashiru B
    Colloids Surf B Biointerfaces; 2013 Feb; 102():653-8. PubMed ID: 23107943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch.
    Abbas S; Bashari M; Akhtar W; Li WW; Zhang X
    Ultrason Sonochem; 2014 Jul; 21(4):1265-74. PubMed ID: 24439913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the generation of oil-in-water (O/W) nanoemulsions through the combination of ultrasound and microchannel.
    Manickam S; Sivakumar K; Pang CH
    Ultrason Sonochem; 2020 Dec; 69():105258. PubMed ID: 32702637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of sonication and microfluidization for liquid-liquid emulsification.
    Maa YF; Hsu CC
    Pharm Dev Technol; 1999 May; 4(2):233-40. PubMed ID: 10231884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification.
    Oh DH; Balakrishnan P; Oh YK; Kim DD; Yong CS; Choi HG
    Int J Pharm; 2011 Feb; 404(1-2):191-7. PubMed ID: 21055456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation.
    Tang SY; Sivakumar M; Ng AM; Shridharan P
    Int J Pharm; 2012 Jul; 430(1-2):299-306. PubMed ID: 22503988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability.
    Mayer S; Weiss J; McClements DJ
    J Colloid Interface Sci; 2013 Jul; 402():122-30. PubMed ID: 23660020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimising oil droplet size using ultrasonic emulsification.
    Leong TS; Wooster TJ; Kentish SE; Ashokkumar M
    Ultrason Sonochem; 2009 Aug; 16(6):721-7. PubMed ID: 19321375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavitation technology - a greener processing technique for the generation of pharmaceutical nanoemulsions.
    Sivakumar M; Tang SY; Tan KW
    Ultrason Sonochem; 2014 Nov; 21(6):2069-83. PubMed ID: 24755340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoemulsions produced by rotor-stator high speed stirring.
    Scholz P; Keck CM
    Int J Pharm; 2015 Mar; 482(1-2):110-7. PubMed ID: 25532442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification.
    Saberi AH; Fang Y; McClements DJ
    J Colloid Interface Sci; 2013 Feb; 391():95-102. PubMed ID: 23116862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of industrially feasible concentrated 30% and 40% nanoemulsions for intravenous drug delivery.
    Müller RH; Harden D; Keck CM
    Drug Dev Ind Pharm; 2012 Apr; 38(4):420-30. PubMed ID: 22088169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Three Processes for Parenteral Nanoemulsion Production: Ultrasounds, Microfluidizer, and Premix Membrane Emulsification.
    Alliod O; Almouazen E; Nemer G; Fessi H; Charcosset C
    J Pharm Sci; 2019 Aug; 108(8):2708-2717. PubMed ID: 30946842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to prepare and stabilize very small nanoemulsions.
    Delmas T; Piraux H; Couffin AC; Texier I; Vinet F; Poulin P; Cates ME; Bibette J
    Langmuir; 2011 Mar; 27(5):1683-92. PubMed ID: 21226496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and characterization of the formation of oil-in-water diazinon nanoemulsions: Modeling and influence of the oil phase, surfactant and sonication.
    Badawy MEI; Saad ASA; Tayeb EHM; Mohammed SA; Abd-Elnabi AD
    J Environ Sci Health B; 2017 Dec; 52(12):896-911. PubMed ID: 29111904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.
    Ali A; Mekhloufi G; Huang N; Agnely F
    Int J Pharm; 2016 Mar; 500(1-2):291-304. PubMed ID: 26784982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.