These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22633879)

  • 1. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed.
    Chang EE; Pan SY; Chen YH; Tan CS; Chiang PC
    J Hazard Mater; 2012 Aug; 227-228():97-106. PubMed ID: 22633879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation for carbonation of steel-making slags in a slurry reactor.
    Chang EE; Chen CH; Chen YH; Pan SY; Chiang PC
    J Hazard Mater; 2011 Feb; 186(1):558-64. PubMed ID: 21168964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.
    Chang EE; Pan SY; Chen YH; Chu HW; Wang CF; Chiang PC
    J Hazard Mater; 2011 Nov; 195():107-14. PubMed ID: 21889848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-film versus slurry-phase carbonation of steel slag: CO₂ uptake and effects on mineralogy.
    Baciocchi R; Costa G; Di Gianfilippo M; Polettini A; Pomi R; Stramazzo A
    J Hazard Mater; 2015; 283():302-13. PubMed ID: 25289564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor.
    Pan SY; Liu HL; Chang EE; Kim H; Chen YH; Chiang PC
    Chemosphere; 2016 Jul; 154():63-71. PubMed ID: 27038901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed.
    Pan SY; Chiang PC; Chen YH; Tan CS; Chang EE
    Environ Sci Technol; 2013 Apr; 47(7):3308-15. PubMed ID: 23458276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic modeling on CO₂ capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed.
    Chang EE; Chen TL; Pan SY; Chen YH; Chiang PC
    J Hazard Mater; 2013 Sep; 260():937-46. PubMed ID: 23892160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.
    Tian S; Jiang J; Chen X; Yan F; Li K
    ChemSusChem; 2013 Dec; 6(12):2348-55. PubMed ID: 23913597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed.
    Pan SY; Chiang PC; Chen YH; Chen CD; Lin HY; Chang EE
    Environ Sci Technol; 2013; 47(23):13677-85. PubMed ID: 24236803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry.
    Pan SY; Chen YH; Chen CD; Shen AL; Lin M; Chiang PC
    Environ Sci Technol; 2015 Oct; 49(20):12380-7. PubMed ID: 26397167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature.
    Rushendra Revathy TD; Palanivelu K; Ramachandran A
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7349-59. PubMed ID: 26681331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects.
    Polettini A; Pomi R; Stramazzo A
    J Environ Manage; 2016 Feb; 167():185-95. PubMed ID: 26686071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.
    Berryman EJ; Williams-Jones AE; Migdisov AA
    J Environ Sci (China); 2015 Jan; 27():266-75. PubMed ID: 25597686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions.
    Reddy KR; Chetri JK; Kumar G; Grubb DG
    Waste Manag; 2019 Feb; 85():425-436. PubMed ID: 30803598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.
    van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN
    Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Converting industrial waste into a value-added cement material through ambient pressure carbonation.
    Xian X; Mahoutian M; Zhang S; Shao Y; Zhang D; Liu J
    J Environ Manage; 2023 Jan; 325(Pt B):116603. PubMed ID: 36323120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns.
    Su TH; Yang HJ; Shau YH; Takazawa E; Lee YC
    J Environ Sci (China); 2016 Mar; 41():99-111. PubMed ID: 26969055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.
    Tian S; Jiang J
    Environ Sci Technol; 2012 Dec; 46(24):13545-51. PubMed ID: 23181908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of thin-film accelerated carbonation on steel slag leaching.
    Baciocchi R; Costa G; Polettini A; Pomi R
    J Hazard Mater; 2015 Apr; 286():369-78. PubMed ID: 25596552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.
    Montes-Hernandez G; Pérez-López R; Renard F; Nieto JM; Charlet L
    J Hazard Mater; 2009 Jan; 161(2-3):1347-54. PubMed ID: 18539389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.