BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 22634022)

  • 1. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545.
    Berezina N
    N Biotechnol; 2013 Jan; 30(2):192-5. PubMed ID: 22634022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator.
    Passanha P; Kedia G; Dinsdale RM; Guwy AJ; Esteves SR
    Bioresour Technol; 2014 Jul; 163():287-94. PubMed ID: 24835740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addressing the challenge of optimum polyhydroxyalkanoate harvesting: monitoring real time process kinetics and biopolymer accumulation using dielectric spectroscopy.
    Kedia G; Passanha P; Dinsdale RM; Guwy AJ; Lee M; Esteves SR
    Bioresour Technol; 2013 Apr; 134():143-50. PubMed ID: 23500571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of carbon source supplementation on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator.
    Fereidouni M; Younesi H; Daneshi A; Sharifzadeh M
    Biotechnol Appl Biochem; 2011 May; 58(3):203-11. PubMed ID: 21679245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade.
    Atlić A; Koller M; Scherzer D; Kutschera C; Grillo-Fernandes E; Horvat P; Chiellini E; Braunegg G
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):295-304. PubMed ID: 21503760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PHA granule formation and degradation by Cupriavidus necator under different nutritional conditions.
    Nygaard D; Yashchuk O; Hermida ÉB
    J Basic Microbiol; 2021 Sep; 61(9):825-834. PubMed ID: 34342882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils.
    Volova T; Sapozhnikova K; Zhila N
    Int J Biol Macromol; 2020 Dec; 164():121-130. PubMed ID: 32679327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyhydroxyalkanoates production from effluent of hydrogen fermentation process by Cupriavidus sp. KKU38.
    Saraphirom P; Reungsang A; Plangklang P
    Environ Technol; 2013; 34(1-4):477-83. PubMed ID: 23530362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of poly[(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production.
    Špoljarić IV; Lopar M; Koller M; Muhr A; Salerno A; Reiterer A; Malli K; Angerer H; Strohmeier K; Schober S; Mittelbach M; Horvat P
    Bioresour Technol; 2013 Apr; 133():482-94. PubMed ID: 23454805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.
    Benesova P; Kucera D; Marova I; Obruca S
    Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of
    Kökpınar Ö; Altun M
    Prep Biochem Biotechnol; 2023; 53(5):532-541. PubMed ID: 36007876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of volatile fatty acids into polyhydroxyalkanoate by Ralstonia eutropha.
    Chakraborty P; Gibbons W; Muthukumarappan K
    J Appl Microbiol; 2009 Jun; 106(6):1996-2005. PubMed ID: 19320958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biosynthesis of multicomponent polyhydroxyalkanoates by Wautersia eutropha].
    Volova TG; Kalacheva GS; Kozhevnikov IV; Steinbuchel A
    Mikrobiologiia; 2007; 76(6):797-804. PubMed ID: 18297870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose.
    Povolo S; Toffano P; Basaglia M; Casella S
    Bioresour Technol; 2010 Oct; 101(20):7902-7. PubMed ID: 20537531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PHA productivity and yield of Ralstonia eutropha when intermittently or continuously fed a mixture of short chain fatty acids.
    Chakraborty P; Muthukumarappan K; Gibbons WR
    J Biomed Biotechnol; 2012; 2012():506153. PubMed ID: 23118512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates.
    Morais C; Freitas F; Cruz MV; Paiva A; Dionísio M; Reis MA
    Int J Biol Macromol; 2014 Nov; 71():68-73. PubMed ID: 24794198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of Cupriavidus necator to conditions favoring polyhydroxyalkanoate production.
    Cavalheiro JM; de Almeida MC; da Fonseca MM; de Carvalho CC
    J Biotechnol; 2012 Dec; 164(2):309-17. PubMed ID: 23376842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery and purification of intracellular polyhydroxyalkanoates from recombinant Cupriavidus necator using water and ethanol.
    Mohammadi M; Hassan MA; Phang LY; Ariffin H; Shirai Y; Ando Y
    Biotechnol Lett; 2012 Feb; 34(2):253-9. PubMed ID: 22038551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of polyhydroxyalkanoates fermentations with on-line capacitance measurement.
    Li L; Wang ZJ; Chen XJ; Chu J; Zhuang YP; Zhang SL
    Bioresour Technol; 2014 Mar; 156():216-21. PubMed ID: 24508658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors.
    Passanha P; Esteves SR; Kedia G; Dinsdale RM; Guwy AJ
    Bioresour Technol; 2013 Nov; 147():345-352. PubMed ID: 23999264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.