These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 22634143)
1. Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. Culbreth ME; Harrill JA; Freudenrich TM; Mundy WR; Shafer TJ Neurotoxicology; 2012 Dec; 33(6):1499-1510. PubMed ID: 22634143 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening. Druwe I; Freudenrich TM; Wallace K; Shafer TJ; Mundy WR Toxicology; 2015 Jul; 333():14-24. PubMed ID: 25841707 [TBL] [Abstract][Full Text] [Related]
3. Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Harrill JA; Freudenrich T; Wallace K; Ball K; Shafer TJ; Mundy WR Toxicol Appl Pharmacol; 2018 Sep; 354():24-39. PubMed ID: 29626487 [TBL] [Abstract][Full Text] [Related]
4. Towards in vitro DT/DNT testing: Assaying chemical susceptibility in early differentiating NT2 cells. Menzner AK; Abolpour Mofrad S; Friedrich O; Gilbert DF Toxicology; 2015 Dec; 338():69-76. PubMed ID: 26498558 [TBL] [Abstract][Full Text] [Related]
5. Neuronal models for evaluation of proliferation in vitro using high content screening. Mundy WR; Radio NM; Freudenrich TM Toxicology; 2010 Apr; 270(2-3):121-30. PubMed ID: 20149836 [TBL] [Abstract][Full Text] [Related]
6. mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach. Hogberg HT; Kinsner-Ovaskainen A; Coecke S; Hartung T; Bal-Price AK Toxicol Sci; 2010 Jan; 113(1):95-115. PubMed ID: 19651682 [TBL] [Abstract][Full Text] [Related]
7. Nuclear NF-κB contributes to chlorpyrifos-induced apoptosis through p53 signaling in human neural precursor cells. Lee JE; Lim MS; Park JH; Park CH; Koh HC Neurotoxicology; 2014 May; 42():58-70. PubMed ID: 24727577 [TBL] [Abstract][Full Text] [Related]
8. A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Buzanska L; Sypecka J; Nerini-Molteni S; Compagnoni A; Hogberg HT; del Torchio R; Domanska-Janik K; Zimmer J; Coecke S Stem Cells; 2009 Oct; 27(10):2591-601. PubMed ID: 19609937 [TBL] [Abstract][Full Text] [Related]
9. Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Pistollato F; de Gyves EM; Carpi D; Bopp SK; Nunes C; Worth A; Bal-Price A Environ Health; 2020 Feb; 19(1):23. PubMed ID: 32093744 [TBL] [Abstract][Full Text] [Related]
10. An industry perspective: A streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity. Li J; Settivari R; LeBaron MJ; Marty MS Neurotoxicology; 2019 Jul; 73():17-30. PubMed ID: 30786249 [TBL] [Abstract][Full Text] [Related]
11. Comparison of PC12 and cerebellar granule cell cultures for evaluating neurite outgrowth using high content analysis. Radio NM; Freudenrich TM; Robinette BL; Crofton KM; Mundy WR Neurotoxicol Teratol; 2010; 32(1):25-35. PubMed ID: 19559085 [TBL] [Abstract][Full Text] [Related]
12. Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening. Tong ZB; Hogberg H; Kuo D; Sakamuru S; Xia M; Smirnova L; Hartung T; Gerhold D J Appl Toxicol; 2017 Feb; 37(2):167-180. PubMed ID: 27143523 [TBL] [Abstract][Full Text] [Related]
13. Development of a high-throughput screening assay for chemical effects on proliferation and viability of immortalized human neural progenitor cells. Breier JM; Radio NM; Mundy WR; Shafer TJ Toxicol Sci; 2008 Sep; 105(1):119-33. PubMed ID: 18550602 [TBL] [Abstract][Full Text] [Related]
14. The DNT-EST: a predictive embryonic stem cell-based assay for developmental neurotoxicity testing in vitro. Hayess K; Riebeling C; Pirow R; Steinfath M; Sittner D; Slawik B; Luch A; Seiler AE Toxicology; 2013 Dec; 314(1):135-47. PubMed ID: 24096155 [TBL] [Abstract][Full Text] [Related]
15. Development of the Concept for Stem Cell-Based Developmental Neurotoxicity Evaluation. Fritsche E; Barenys M; Klose J; Masjosthusmann S; Nimtz L; Schmuck M; Wuttke S; Tigges J Toxicol Sci; 2018 Sep; 165(1):14-20. PubMed ID: 29982725 [TBL] [Abstract][Full Text] [Related]
16. Paraquat and Maneb Exposure Alters Rat Neural Stem Cell Proliferation by Inducing Oxidative Stress: New Insights on Pesticide-Induced Neurodevelopmental Toxicity. Colle D; Farina M; Ceccatelli S; Raciti M Neurotox Res; 2018 Nov; 34(4):820-833. PubMed ID: 29859004 [TBL] [Abstract][Full Text] [Related]
17. Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening. Radio NM; Breier JM; Shafer TJ; Mundy WR Toxicol Sci; 2008 Sep; 105(1):106-18. PubMed ID: 18539913 [TBL] [Abstract][Full Text] [Related]
18. Inherited effects of low-dose exposure to methylmercury in neural stem cells. Bose R; Onishchenko N; Edoff K; Janson Lang AM; Ceccatelli S Toxicol Sci; 2012 Dec; 130(2):383-90. PubMed ID: 22918959 [TBL] [Abstract][Full Text] [Related]
19. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. van Thriel C; Westerink RH; Beste C; Bale AS; Lein PJ; Leist M Neurotoxicology; 2012 Aug; 33(4):911-24. PubMed ID: 22008243 [TBL] [Abstract][Full Text] [Related]
20. Human Ntera2 cells as a predictive in vitro test system for developmental neurotoxicity. Stern M; Gierse A; Tan S; Bicker G Arch Toxicol; 2014 Jan; 88(1):127-36. PubMed ID: 23917397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]