BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 22634232)

  • 1. Stimulation of shank muscles during functional electrical stimulation cycling increases ankle excursion in individuals with spinal cord injury.
    Fornusek C; Davis GM; Baek I
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1930-6. PubMed ID: 22634232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the efficiency of FES cycling: a framework and systematic review.
    Hunt KJ; Fang J; Saengsuwan J; Grob M; Laubacher M
    Technol Health Care; 2012; 20(5):395-422. PubMed ID: 23079945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic simulation of FES-cycling: influence of individual parameters.
    Gföhler M; Lugner P
    IEEE Trans Neural Syst Rehabil Eng; 2004 Dec; 12(4):398-405. PubMed ID: 15614995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test bed with force-measuring crank for static and dynamic investigations on cycling by means of functional electrical stimulation.
    Gföhler M; Angeli T; Eberharter T; Lugner P; Mayr W; Hofer C
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):169-80. PubMed ID: 11474970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in spastic muscle tone increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements.
    Krause P; Szecsi J; Straube A
    Clin Rehabil; 2008 Jul; 22(7):627-34. PubMed ID: 18586814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of releasing ankle joint during electrically evoked cycling in persons with motor complete spinal cord injury.
    Hamdan PNF; Hamzaid NA; Hasnan N; Abd Razak NA; Razman R; Usman J
    Sci Rep; 2024 Mar; 14(1):6451. PubMed ID: 38499594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of leg-powered paraplegic cycling using stimulation of the lumbo-sacral anterior spinal nerve roots.
    Perkins TA; de N Donaldson N; Hatcher NA; Swain ID; Wood DE
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):158-64. PubMed ID: 12503780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A randomized controlled trial on the effects of cycling with and without electrical stimulation on cardiorespiratory and vascular health in children with spinal cord injury.
    Johnston TE; Smith BT; Mulcahey MJ; Betz RR; Lauer RT
    Arch Phys Med Rehabil; 2009 Aug; 90(8):1379-88. PubMed ID: 19651272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee kinetics during functional electrical stimulation induced cycling in subjects with spinal cord injury: a preliminary study.
    Franco JC; Perell KL; Gregor RJ; Scremin AM
    J Rehabil Res Dev; 1999 Jul; 36(3):207-16. PubMed ID: 10659804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of paraplegic cycling: adaptations to 12 months of high volume training.
    Berry HR; Kakebeeke TH; Donaldson N; Perret C; Hunt KJ
    Technol Health Care; 2012; 20(2):73-84. PubMed ID: 22508020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circulatory hypokinesis and functional electric stimulation during standing in persons with spinal cord injury.
    Faghri PD; Yount JP; Pesce WJ; Seetharama S; Votto JJ
    Arch Phys Med Rehabil; 2001 Nov; 82(11):1587-95. PubMed ID: 11689980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pilot study of the effect of low-cadence functional electrical stimulation cycling after spinal cord injury on thigh girth and strength.
    Fornusek C; Davis GM; Russold MF
    Arch Phys Med Rehabil; 2013 May; 94(5):990-3. PubMed ID: 23123504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional electrical stimulation elliptical stepping versus cycling in spinal cord-injured individuals.
    Hamzaid NA; Pithon KR; Smith RM; Davis GM
    Clin Biomech (Bristol, Avon); 2012 Aug; 27(7):731-7. PubMed ID: 22516622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of detraining on bone and muscle tissue in subjects with chronic spinal cord injury after a period of electrically-stimulated cycling: a small cohort study.
    Frotzler A; Coupaud S; Perret C; Kakebeeke TH; Hunt KJ; Eser P
    J Rehabil Med; 2009 Mar; 41(4):282-5. PubMed ID: 19247550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sliding mode closed-loop control of FES: controlling the shank movement.
    Jezernik S; Wassink RG; Keller T
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):263-72. PubMed ID: 14765699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based control of FES-induced single joint movements.
    Ferrarin M; Palazzo F; Riener R; Quintern J
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):245-57. PubMed ID: 11561660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional output improvement in FES cycling by means of forced smooth pedaling.
    Szecsi J; Krause P; Krafczyk S; Brandt T; Straube A
    Med Sci Sports Exerc; 2007 May; 39(5):764-80. PubMed ID: 17468573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary evaluation of a controlled-brake orthosis for FES-aided gait.
    Goldfarb M; Korkowski K; Harrold B; Durfee W
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):241-8. PubMed ID: 14518787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FES-propelled cycling of SCI subjects with highly spastic leg musculature.
    Szecsi J; Schiller M
    NeuroRehabilitation; 2009; 24(3):243-53. PubMed ID: 19458432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.