These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 22634396)
1. Bovine rod rhodopsin. 1. Bleaching by luminescence in vitro by recombination of radicals from polyunsaturated fatty acids. Narici L; Paci M; Brunetti V; Rinaldi A; Sannita WG; De Martino A Free Radic Biol Med; 2012 Aug; 53(3):482-7. PubMed ID: 22634396 [TBL] [Abstract][Full Text] [Related]
2. Bovine rod rhodopsin: 2. Bleaching in vitro upon 12C ions irradiation as source of effects as light flash for patients and for humans in space. Narici L; Paci M; Brunetti V; Rinaldi A; Sannita WG; Carozzo S; Demartino A Int J Radiat Biol; 2013 Oct; 89(10):765-9. PubMed ID: 23638692 [TBL] [Abstract][Full Text] [Related]
3. Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats. Bicknell IR; Darrow R; Barsalou L; Fliesler SJ; Organisciak DT Mol Vis; 2002 Sep; 8():333-40. PubMed ID: 12355060 [TBL] [Abstract][Full Text] [Related]
4. An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Catalá A Int J Biochem Cell Biol; 2006; 38(9):1482-95. PubMed ID: 16621670 [TBL] [Abstract][Full Text] [Related]
5. Photobleaching and cyclic GMP dependences of rhodopsin phosphorylation in rod outer segment. Gupta BD Indian J Biochem Biophys; 1989 Oct; 26(5):305-10. PubMed ID: 2560768 [TBL] [Abstract][Full Text] [Related]
6. Lipid-protein modifications during ascorbate-Fe2+ peroxidation of photoreceptor membranes: protective effect of melatonin. Guajardo MH; Terrasa AM; Catalá A J Pineal Res; 2006 Oct; 41(3):201-10. PubMed ID: 16948780 [TBL] [Abstract][Full Text] [Related]
7. Alpha-tocopherol protects against oxidative damage to lipids of the rod outer segments of the equine retina. Terrasa AM; Guajardo MH; Marra CA; Zapata G Vet J; 2009 Dec; 182(3):463-8. PubMed ID: 18829353 [TBL] [Abstract][Full Text] [Related]
8. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro. Sakamoto T; Khorana HG Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826 [TBL] [Abstract][Full Text] [Related]
9. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Organisciak DT; Darrow RM; Jiang YL; Blanks JC Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2243-57. PubMed ID: 8843911 [TBL] [Abstract][Full Text] [Related]
10. Retinal phosphenes and discrete dark noises in rods: a new biophysical framework. Bókkon I; Vimal RL J Photochem Photobiol B; 2009 Sep; 96(3):255-9. PubMed ID: 19643631 [TBL] [Abstract][Full Text] [Related]
11. Regeneration of rhodopsin and isorhodopsin in rod outer segment preparations: absence of effect of solvent parameters. Lacy ME; Veronee CD; Crouch RK Physiol Chem Phys Med NMR; 1984; 16(4):275-81. PubMed ID: 6240663 [TBL] [Abstract][Full Text] [Related]
12. The roles of vitamin E and unsaturated fatty acids in the visual process. Robison WG; Kuwabara T; Bieri JG Retina; 1982; 2(4):263-81. PubMed ID: 6101134 [TBL] [Abstract][Full Text] [Related]
13. Lipid peroxidation in rod outer segments. Role of hydroxyl radical and lipid hydroperoxides. De La Paz MA; Anderson RE Invest Ophthalmol Vis Sci; 1992 Jun; 33(7):2091-6. PubMed ID: 1607222 [TBL] [Abstract][Full Text] [Related]
14. Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules. Aton BR Biochemistry; 1986 Feb; 25(3):677-80. PubMed ID: 3955023 [TBL] [Abstract][Full Text] [Related]
15. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes. Buzhynskyy N; Salesse C; Scheuring S J Mol Recognit; 2011; 24(3):483-9. PubMed ID: 21504027 [TBL] [Abstract][Full Text] [Related]
16. Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors. Chen C; Tsina E; Cornwall MC; Crouch RK; Vijayaraghavan S; Koutalos Y Biophys J; 2005 Mar; 88(3):2278-87. PubMed ID: 15626704 [TBL] [Abstract][Full Text] [Related]
17. Influence of UVA light stress on photoreceptor cell metabolism: decreased rates of rhodopsin regeneration and opsin synthesis. Rapp LM; Ghalayini AJ Exp Eye Res; 1999 Jun; 68(6):757-64. PubMed ID: 10375439 [TBL] [Abstract][Full Text] [Related]
18. Dietary deficiency of N-3 fatty acids alters rhodopsin content and function in the rat retina. Bush RA; Malnoë A; Remé CE; Williams TP Invest Ophthalmol Vis Sci; 1994 Jan; 35(1):91-100. PubMed ID: 8300367 [TBL] [Abstract][Full Text] [Related]
19. Retinal fatty acid binding protein reduce lipid peroxidation stimulated by long-chain fatty acid hydroperoxides on rod outer segments. Guajardo MH; Terrasa AM; Catalá A Biochim Biophys Acta; 2002 Apr; 1581(3):65-74. PubMed ID: 12020634 [TBL] [Abstract][Full Text] [Related]
20. Light-dependent Na(+)-Ca2+ exchange in retinal rod discs. Volotovski ID; Khovratovich VI; Orlov SN Gen Physiol Biophys; 1989 Dec; 8(6):589-601. PubMed ID: 2482219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]