BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 22634643)

  • 1. Deep and superficial keloid fibroblasts contribute differentially to tissue phenotype in a novel in vivo model of keloid scar.
    Supp DM; Hahn JM; Glaser K; McFarland KL; Boyce ST
    Plast Reconstr Surg; 2012 Jun; 129(6):1259-1271. PubMed ID: 22634643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructed human keloid models show heterogeneity within keloid scars.
    Limandjaja GC; van den Broek LJ; Waaijman T; Breetveld M; Monstrey S; Scheper RJ; Niessen FB; Gibbs S
    Arch Dermatol Res; 2018 Dec; 310(10):815-826. PubMed ID: 30370495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of In Vitro Reconstructed Human Normotrophic, Hypertrophic, and Keloid Scar Models.
    Limandjaja GC; van den Broek LJ; Breetveld M; Waaijman T; Monstrey S; de Boer EM; Scheper RJ; Niessen FB; Gibbs S
    Tissue Eng Part C Methods; 2018 Apr; 24(4):242-253. PubMed ID: 29490604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrotic remodeling of tissue-engineered skin with deep dermal fibroblasts is reduced by keratinocytes.
    Varkey M; Ding J; Tredget EE
    Tissue Eng Part A; 2014 Feb; 20(3-4):716-27. PubMed ID: 24090416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling.
    Fang F; Huang RL; Zheng Y; Liu M; Huo R
    J Dermatol Sci; 2016 Aug; 83(2):95-105. PubMed ID: 27211019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D modeling of keloid scars in vitro by cell and tissue engineering.
    Suttho D; Mankhetkorn S; Binda D; Pazart L; Humbert P; Rolin G
    Arch Dermatol Res; 2017 Jan; 309(1):55-62. PubMed ID: 27942931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The expression pattern of keratin 24 in tissue-engineered dermo-epidermal human skin substitutes in an in vivo model.
    Klar AS; Michalak K; Böttcher-Haberzeth S; Reichmann E; Meuli M; Biedermann T
    Pediatr Surg Int; 2018 Feb; 34(2):237-244. PubMed ID: 29039047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders.
    Varkey M; Ding J; Tredget EE
    Tissue Eng Part A; 2014 Feb; 20(3-4):540-52. PubMed ID: 24004160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy.
    Torkian BA; Yeh AT; Engel R; Sun CH; Tromberg BJ; Wong BJ
    Arch Facial Plast Surg; 2004; 6(3):180-7. PubMed ID: 15148128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Keratin expression in cultured skin substitutes suggests that the hyperproliferative phenotype observed in vitro is normalized after grafting.
    Smiley AK; Klingenberg JM; Boyce ST; Supp DM
    Burns; 2006 Mar; 32(2):135-8. PubMed ID: 16455203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic modification of cultured skin substitutes by transduction of human keratinocytes and fibroblasts with platelet-derived growth factor-A.
    Supp DM; Bell SM; Morgan JR; Boyce ST
    Wound Repair Regen; 2000; 8(1):26-35. PubMed ID: 10760212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.
    Varkey M; Ding J; Tredget EE;
    Biomaterials; 2014 Dec; 35(36):9591-8. PubMed ID: 25176070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the activin system in keloid pathogenesis.
    Mukhopadhyay A; Chan SY; Lim IJ; Phillips DJ; Phan TT
    Am J Physiol Cell Physiol; 2007 Apr; 292(4):C1331-8. PubMed ID: 16971493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenoviral overexpression and small interfering RNA suppression demonstrate that plasminogen activator inhibitor-1 produces elevated collagen accumulation in normal and keloid fibroblasts.
    Tuan TL; Hwu P; Ho W; Yiu P; Chang R; Wysocki A; Benya PD
    Am J Pathol; 2008 Nov; 173(5):1311-25. PubMed ID: 18832570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantation of human keloid into athymic mice.
    Estrem SA; Domayer M; Bardach J; Cram AE
    Laryngoscope; 1987 Oct; 97(10):1214-8. PubMed ID: 3309514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of electrospun collagen on wound contraction of engineered skin substitutes.
    Powell HM; Supp DM; Boyce ST
    Biomaterials; 2008 Mar; 29(7):834-43. PubMed ID: 18054074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo model of wound healing based on transplanted tissue-engineered skin.
    Geer DJ; Swartz DD; Andreadis ST
    Tissue Eng; 2004; 10(7-8):1006-17. PubMed ID: 15363158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annexin A2 participates in human skin keloid formation by inhibiting fibroblast proliferation.
    Kim SH; Jung SH; Chung H; Jo DI; Kim CK; Park SH; Won KJ; Jeon HS; Kim B
    Arch Dermatol Res; 2014 May; 306(4):347-57. PubMed ID: 24402284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Keloid-derived, plasma/fibrin-based skin equivalents generate de novo dermal and epidermal pathology of keloid fibrosis in a mouse model.
    Lee YS; Hsu T; Chiu WC; Sarkozy H; Kulber DA; Choi A; Kim EW; Benya PD; Tuan TL
    Wound Repair Regen; 2016 Mar; 24(2):302-16. PubMed ID: 26683740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secreted Factors from Keloid Keratinocytes Modulate Collagen Deposition by Fibroblasts from Normal and Fibrotic Tissue: A Pilot Study.
    Alghamdi MA; Al-Eitan LN; Stevenson A; Chaudhari N; Hortin N; Wallace HJ; Danielsen PL; Manzur M; Wood FM; Fear MW
    Biomedicines; 2020 Jul; 8(7):. PubMed ID: 32650468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.