BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22634736)

  • 1. The mechanism underlying nitroxyl and nitric oxide formation from hydroxamic acids.
    Samuni Y; Samuni U; Goldstein S
    Biochim Biophys Acta; 2012 Oct; 1820(10):1560-6. PubMed ID: 22634736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suberoylanilide hydroxamic acid radiosensitizes tumor hypoxic cells in vitro through the oxidation of nitroxyl to nitric oxide.
    Samuni Y; Wink DA; Krishna MC; Mitchell JB; Goldstein S
    Free Radic Biol Med; 2014 Aug; 73():291-8. PubMed ID: 24880052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-electron oxidation of acetohydroxamic acid: the intermediacy of nitroxyl and peroxynitrite.
    Samuni A; Goldstein S
    J Phys Chem A; 2011 Apr; 115(14):3022-8. PubMed ID: 21425838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of cyclic nitroxide radicals as HNO scavengers.
    Samuni Y; Samuni U; Goldstein S
    J Inorg Biochem; 2013 Jan; 118():155-61. PubMed ID: 23122928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic activity of acetohydroxamic acid on prokaryotes under oxidative stress: the role of reactive nitrogen species.
    Yadav R; Goldstein S; Nasef MO; Lee W; Samuni U
    Free Radic Biol Med; 2014 Dec; 77():291-7. PubMed ID: 25261226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome c/H2O2-mediated one electron oxidation of carcinogenic N-fluorenylacetohydroxamic acids to nitroxyl free radicals.
    Ritter CL; Malejka-Giganti D; Polnaszek CF
    Chem Biol Interact; 1983 Sep; 46(3):317-34. PubMed ID: 6315247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen Dioxide Reaction with Nitroxide Radical Derived from Hydroxamic Acids: The Intermediacy of Acyl Nitroso and Nitroxyl (HNO).
    Maimon E; Samuni A; Goldstein S
    J Phys Chem A; 2018 Apr; 122(15):3747-3753. PubMed ID: 29608853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the distinction between nitroxyl and nitric oxide using nitronyl nitroxides.
    Samuni U; Samuni Y; Goldstein S
    J Am Chem Soc; 2010 Jun; 132(24):8428-32. PubMed ID: 20504018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A singular value decomposition approach for kinetic analysis of reactions of HNO with myoglobin.
    Zapata AL; Kumar MR; Pervitsky D; Farmer PJ
    J Inorg Biochem; 2013 Jan; 118():171-8. PubMed ID: 23140900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of N-hydroxy-l-arginine by hypochlorous acid to form nitroxyl (HNO).
    Cline MR; Chavez TA; Toscano JP
    J Inorg Biochem; 2013 Jan; 118():148-54. PubMed ID: 23102772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piloty's acid derivative with improved nitroxyl-releasing characteristics.
    Aizawa K; Nakagawa H; Matsuo K; Kawai K; Ieda N; Suzuki T; Miyata N
    Bioorg Med Chem Lett; 2013 Apr; 23(8):2340-3. PubMed ID: 23489625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chemistry of nitroxyl-releasing compounds.
    DuMond JF; King SB
    Antioxid Redox Signal; 2011 May; 14(9):1637-48. PubMed ID: 21235345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of nitroxyl and nitric oxide by water-soluble Mn(III) porphyrins.
    Martí MA; Bari SE; Estrin DA; Doctorovich F
    J Am Chem Soc; 2005 Apr; 127(13):4680-4. PubMed ID: 15796534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitroxyl accelerates the oxidation of oxyhemoglobin by nitrite.
    Bellavia L; DuMond JF; Perlegas A; Bruce King S; Kim-Shapiro DB
    Nitric Oxide; 2013 May; 31():38-47. PubMed ID: 23545404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water soluble acyloxy nitroso compounds: HNO release and reactions with heme and thiol containing proteins.
    DuMond JF; Wright MW; King SB
    J Inorg Biochem; 2013 Jan; 118():140-7. PubMed ID: 23083700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of nitric oxide and possibly nitroxyl by nitrosation of sulfohydroxamic acids and hydroxamic acids.
    Shirota FN; DeMaster EG; Lee MJ; Nagasawa HT
    Nitric Oxide; 1999 Dec; 3(6):445-53. PubMed ID: 10637122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications.
    Jackson MI; Han TH; Serbulea L; Dutton A; Ford E; Miranda KM; Houk KN; Wink DA; Fukuto JM
    Free Radic Biol Med; 2009 Oct; 47(8):1130-9. PubMed ID: 19577638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron catalyzed conversion of NO into nitrosonium (NO+) and nitroxyl (HNO/NO-) species.
    Stojanović S; Stanić D; Nikolić M; Spasić M; Niketić V
    Nitric Oxide; 2004 Nov; 11(3):256-62. PubMed ID: 15566972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrite reduction mediated by heme models. Routes to NO and HNO?
    Heinecke JL; Khin C; Pereira JC; Suárez SA; Iretskii AV; Doctorovich F; Ford PC
    J Am Chem Soc; 2013 Mar; 135(10):4007-17. PubMed ID: 23421316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pentacyanoferrate(II) complex of pyridine-4- and pyrazine-2-hydroxamic acid as source of HNO: investigation of anti-tubercular and vasodilation activities.
    Carvalho EM; de Freitas Paulo T; Saquet AS; Abbadi BL; Macchi FS; Bizarro CV; de Morais Campos R; Ferreira TLA; do Nascimento NRF; Lopes LGF; Chauvin R; Sousa EHS; Bernardes-Génisson V
    J Biol Inorg Chem; 2020 Sep; 25(6):887-901. PubMed ID: 32728907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.