These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 22634760)
1. Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Fang W; Si Y; Douglass S; Casero D; Merchant SS; Pellegrini M; Ladunga I; Liu P; Spalding MH Plant Cell; 2012 May; 24(5):1876-93. PubMed ID: 22634760 [TBL] [Abstract][Full Text] [Related]
2. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Fukuzawa H; Miura K; Ishizaki K; Kucho KI; Saito T; Kohinata T; Ohyama K Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5347-52. PubMed ID: 11287669 [TBL] [Abstract][Full Text] [Related]
3. The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Xiang Y; Zhang J; Weeks DP Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5341-6. PubMed ID: 11309511 [TBL] [Abstract][Full Text] [Related]
4. Glycolate production by a Chlamydomonas reinhardtii mutant lacking carbon-concentrating mechanism. Yun EJ; Zhang GC; Atkinson C; Lane S; Liu JJ; Ort DR; Jin YS J Biotechnol; 2021 Jul; 335():39-46. PubMed ID: 34090947 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic characteristics of a multicellular green alga Volvox carteri in response to external CO2 levels possibly regulated by CCM1/CIA5 ortholog. Yamano T; Fujita A; Fukuzawa H Photosynth Res; 2011 Sep; 109(1-3):151-9. PubMed ID: 21253860 [TBL] [Abstract][Full Text] [Related]
7. Thylakoid localized bestrophin-like proteins are essential for the CO Mukherjee A; Lau CS; Walker CE; Rai AK; Prejean CI; Yates G; Emrich-Mills T; Lemoine SG; Vinyard DJ; Mackinder LCM; Moroney JV Proc Natl Acad Sci U S A; 2019 Aug; 116(34):16915-16920. PubMed ID: 31391312 [TBL] [Abstract][Full Text] [Related]
8. The novel Myb transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Yoshioka S; Taniguchi F; Miura K; Inoue T; Yamano T; Fukuzawa H Plant Cell; 2004 Jun; 16(6):1466-77. PubMed ID: 15155888 [TBL] [Abstract][Full Text] [Related]
9. The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Pollock SV; Prout DL; Godfrey AC; Lemaire SD; Moroney JV Plant Mol Biol; 2004 Sep; 56(1):125-32. PubMed ID: 15604732 [TBL] [Abstract][Full Text] [Related]
10. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. Santhanagopalan I; Wong R; Mathur T; Griffiths H J Exp Bot; 2021 Jun; 72(13):4604-4624. PubMed ID: 33893473 [TBL] [Abstract][Full Text] [Related]
11. Knockout of Asadian M; Saadati M; Bajestani FB; Beardall J; Abdolahadi F; Mahdinezhad N J Genet; 2022; 101():. PubMed ID: 35129125 [TBL] [Abstract][Full Text] [Related]
12. Identification of a novel gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii. Ma Y; Pollock SV; Xiao Y; Cunnusamy K; Moroney JV Plant Physiol; 2011 Jun; 156(2):884-96. PubMed ID: 21527423 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation. Winck FV; Arvidsson S; Riaño-Pachón DM; Hempel S; Koseska A; Nikoloski Z; Urbina Gomez DA; Rupprecht J; Mueller-Roeber B PLoS One; 2013; 8(11):e79909. PubMed ID: 24224019 [TBL] [Abstract][Full Text] [Related]
14. Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. Im CS; Grossman AR Plant J; 2002 May; 30(3):301-13. PubMed ID: 12000678 [TBL] [Abstract][Full Text] [Related]
15. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere. Pollock SV; Colombo SL; Prout DL; Godfrey AC; Moroney JV Plant Physiol; 2003 Dec; 133(4):1854-61. PubMed ID: 14605215 [TBL] [Abstract][Full Text] [Related]
16. Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Yamano T; Miura K; Fukuzawa H Plant Physiol; 2008 May; 147(1):340-54. PubMed ID: 18322145 [TBL] [Abstract][Full Text] [Related]
17. ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage. Romero-Campero FJ; Perez-Hurtado I; Lucas-Reina E; Romero JM; Valverde F BMC Genomics; 2016 Mar; 17():227. PubMed ID: 26968660 [TBL] [Abstract][Full Text] [Related]
18. Acclimation of Chlamydomonas to changing carbon availability. Spalding MH; Van K; Wang Y; Nakamura Y Funct Plant Biol; 2002 Apr; 29(3):221-230. PubMed ID: 32689469 [TBL] [Abstract][Full Text] [Related]
19. Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. Brueggeman AJ; Gangadharaiah DS; Cserhati MF; Casero D; Weeks DP; Ladunga I Plant Cell; 2012 May; 24(5):1860-75. PubMed ID: 22634764 [TBL] [Abstract][Full Text] [Related]
20. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. Yamano T; Fukuzawa H J Basic Microbiol; 2009 Feb; 49(1):42-51. PubMed ID: 19253331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]