BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22635054)

  • 1. A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.
    Farajidavar A; O'Grady G; Rao SM; Cheng LK; Abell T; Chiao JC
    Physiol Meas; 2012 Jun; 33(6):N29-37. PubMed ID: 22635054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation.
    Paskaranandavadivel N; Wang R; Sathar S; O'Grady G; Cheng LK; Farajidavar A
    Neurogastroenterol Motil; 2015 Apr; 27(4):580-5. PubMed ID: 25599978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R; Paskaranandavadivel N; Du P; Trew ML; O'Grady G; Windsor JA; Cheng LK
    Surg Endosc; 2017 Jan; 31(1):477-486. PubMed ID: 27129554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine.
    Calder S; Cheng LK; Andrews CN; Paskaranandavadivel N; Waite S; Alighaleh S; Erickson JC; Gharibans A; O'Grady G; Du P
    Am J Physiol Gastrointest Liver Physiol; 2022 Oct; 323(4):G295-G305. PubMed ID: 35916432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
    Angeli TR; Du P; Paskaranandavadivel N; Sathar S; Hall A; Asirvatham SJ; Farrugia G; Windsor JA; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2017 May; 29(5):. PubMed ID: 28035728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 32-channel wireless system for recording gastric electrical activity.
    Springston CS; Rui Bao ; Farajidavar A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1971-1974. PubMed ID: 28268715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation of an existing implantable cardiac monitoring device for measurement of gastric electrical slow-wave activity.
    Dowrick JM; Jungbauer Nikolas L; Offutt SJ; Tremain P; Erickson JC; Angeli-Gordon TR
    Neurogastroenterol Motil; 2024 Feb; 36(2):e14723. PubMed ID: 38062544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inductive narrow-pulse RFID telemetry system for gastric slow waves monitoring.
    Javan-Khoskholgh A; Abukhalaf Z; Ji Li ; Miller LS; Kiani M; Farajidavar A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4820-4823. PubMed ID: 28269349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Miniature Configurable Wireless System for Recording Gastric Electrophysiological Activity and Delivering High-Energy Electrical Stimulation.
    Wang R; Abukhalaf Z; Javan-Khoshkholgh A; Wang TH; Sathar S; Du P; Angeli TR; Cheng LK; O'Grady G; Paskaranandavadivel N; Farajidavar A
    IEEE J Emerg Sel Top Circuits Syst; 2018 Jun; 8(2):221-229. PubMed ID: 30687579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel laparoscopic device for measuring gastrointestinal slow-wave activity.
    O'Grady G; Du P; Egbuji JU; Lammers WJ; Wahab A; Pullan AJ; Cheng LK; Windsor JA
    Surg Endosc; 2009 Dec; 23(12):2842-8. PubMed ID: 19466491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of circumcostal gastropexy on gastric myoelectric and motor activity in dogs.
    Hall JA; Willer RL; Solie TN; Twedt DC
    J Small Anim Pract; 1997 May; 38(5):200-7. PubMed ID: 9179817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Implantable Inductive Near-Field Communication System with 64 Channels for Acquisition of Gastrointestinal Bioelectrical Activity.
    Javan-Khoshkholgh A; Farajidavar A
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31238521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity.
    Paskaranandavadivel N; Angeli TR; Manson T; Stocker A; McElmurray L; O'Grady G; Abell T; Cheng LK
    Physiol Meas; 2019 Mar; 40(2):025011. PubMed ID: 30754026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastric electrical stimulation: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2006; 6(16):1-79. PubMed ID: 23074486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A miniature bidirectional RF communication system for micro gastrointestinal robots.
    Wang W; Yan G; Ding G
    J Med Eng Technol; 2003; 27(4):160-3. PubMed ID: 12851060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a highly-scalable wireless implantable system-on-a-chip for gastric electrophysiology.
    Ibrahim A; Farajidavar A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2689-92. PubMed ID: 26736846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
    O'Grady G; Du P; Cheng LK; Egbuji JU; Lammers WJ; Windsor JA; Pullan AJ
    Am J Physiol Gastrointest Liver Physiol; 2010 Sep; 299(3):G585-92. PubMed ID: 20595620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extending the automated gastrointestinal analysis pipeline: Removal of invalid slow wave marks in gastric serosal recordings.
    Paskaranandavadivel N; Du P; Erickson J; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1938-41. PubMed ID: 26736663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.