BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22635266)

  • 1. Quantitative nanoscale visualization of heterogeneous electron transfer rates in 2D carbon nanotube networks.
    Güell AG; Ebejer N; Snowden ME; McKelvey K; Macpherson JV; Unwin PR
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11487-92. PubMed ID: 22635266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection, characterisation and mapping of complex electrochemical processes at individual single-walled carbon nanotubes: the case of serotonin oxidation.
    Güell AG; Meadows KE; Dudin PV; Ebejer N; Byers JC; Macpherson JV; Unwin PR
    Faraday Discuss; 2014; 172():439-55. PubMed ID: 25427004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic electrochemical activity of single walled carbon nanotube-Nafion assemblies.
    Snowden ME; Edwards MA; Rudd NC; Macpherson JV; Unwin PR
    Phys Chem Chem Phys; 2013 Apr; 15(14):5030-8. PubMed ID: 23450204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemistry at nanoscale electrodes: individual single-walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires.
    Dudin PV; Snowden ME; Macpherson JV; Unwin PR
    ACS Nano; 2011 Dec; 5(12):10017-25. PubMed ID: 22092149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning electrochemical microscopy of individual single-walled carbon nanotubes.
    Kim J; Xiong H; Hofmann M; Kong J; Amemiya S
    Anal Chem; 2010 Mar; 82(5):1605-7. PubMed ID: 20112959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Visualization of Electrochemical Activity at Indium Tin Oxide Electrodes.
    Wahab OJ; Kang M; Meloni GN; Daviddi E; Unwin PR
    Anal Chem; 2022 Mar; 94(11):4729-4736. PubMed ID: 35255211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of horizontally aligned single-walled carbon nanotubes on anisotropically etched silicon substrate.
    Orofeo CM; Ago H; Ikuta T; Takahasi K; Tsuji M
    Nanoscale; 2010 Sep; 2(9):1708-14. PubMed ID: 20820701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surfactant type and redox polymer type on single-walled carbon nanotube modified electrodes.
    Chen J; Tran TO; Ray MT; Brunski DB; Keay JC; Hickey D; Johnson MB; Glatzhofer DT; Schmidtke DW
    Langmuir; 2013 Aug; 29(33):10586-95. PubMed ID: 23859497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube biosensors with aptamers as molecular recognition elements.
    So HM; Park DW; Chang H; Lee JO
    Methods Mol Biol; 2010; 625():239-49. PubMed ID: 20422395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong micro-dielectric environment effect on the band gaps of (n,m)single-walled carbon nanotubes.
    Hirana Y; Tanaka Y; Niidome Y; Nakashima N
    J Am Chem Soc; 2010 Sep; 132(37):13072-7. PubMed ID: 20738097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping nanoscale electrochemistry of individual single-walled carbon nanotubes.
    Güell AG; Meadows KE; Dudin PV; Ebejer N; Macpherson JV; Unwin PR
    Nano Lett; 2014 Jan; 14(1):220-4. PubMed ID: 24274402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-walled carbon nanotube network ultramicroelectrodes.
    Dumitrescu I; Unwin PR; Wilson NR; Macpherson JV
    Anal Chem; 2008 May; 80(10):3598-605. PubMed ID: 18410133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlative Voltammetric Microscopy: Structure-Activity Relationships in the Microscopic Electrochemical Behavior of Screen Printed Carbon Electrodes.
    Martín-Yerga D; Costa-García A; Unwin PR
    ACS Sens; 2019 Aug; 4(8):2173-2180. PubMed ID: 31353890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks.
    Svedružić D; Blackburn JL; Tenent RC; Rocha JD; Vinzant TB; Heben MJ; King PW
    J Am Chem Soc; 2011 Mar; 133(12):4299-306. PubMed ID: 21384925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein electrochemistry using aligned carbon nanotube arrays.
    Gooding JJ; Wibowo R; Liu J; Yang W; Losic D; Orbons S; Mearns FJ; Shapter JG; Hibbert DB
    J Am Chem Soc; 2003 Jul; 125(30):9006-7. PubMed ID: 15369344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled functionalisation of single-walled carbon nanotube network electrodes for the enhanced voltammetric detection of dopamine.
    E SP; Miller TS; Macpherson JV; Unwin PR
    Phys Chem Chem Phys; 2015 Oct; 17(39):26394-402. PubMed ID: 26388328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols.
    Gong K; Zhu X; Zhao R; Xiong S; Mao L; Chen C
    Anal Chem; 2005 Dec; 77(24):8158-65. PubMed ID: 16351170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of electron structure on the semiconducting single-walled carbon nanotubes for effectively electrosensing guanine and adenine.
    Ji L; Yu S; Zhou X; Bao Y; Yang F; Kang W; Zhang X
    Anal Chim Acta; 2019 Nov; 1079():86-93. PubMed ID: 31387723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.