These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 22636256)
1. Mitochondrial function in human skeletal muscle following high-altitude exposure. Jacobs RA; Boushel R; Wright-Paradis C; Calbet JA; Robach P; Gnaiger E; Lundby C Exp Physiol; 2013 Jan; 98(1):245-55. PubMed ID: 22636256 [TBL] [Abstract][Full Text] [Related]
2. Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria. Jacobs RA; Siebenmann C; Hug M; Toigo M; Meinild AK; Lundby C FASEB J; 2012 Dec; 26(12):5192-200. PubMed ID: 22968913 [TBL] [Abstract][Full Text] [Related]
3. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice. Mahalingam S; McClelland GB; Scott GR J Physiol; 2017 Jul; 595(14):4785-4801. PubMed ID: 28418073 [TBL] [Abstract][Full Text] [Related]
4. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Gnaiger E Int J Biochem Cell Biol; 2009 Oct; 41(10):1837-45. PubMed ID: 19467914 [TBL] [Abstract][Full Text] [Related]
5. Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. Jacobs RA; Lundby AK; Fenk S; Gehrig S; Siebenmann C; Flück D; Kirk N; Hilty MP; Lundby C J Physiol; 2016 Mar; 594(5):1151-66. PubMed ID: 26339730 [TBL] [Abstract][Full Text] [Related]
6. Effect of chronic hypoxia on muscle enzyme activities. Howald H; Pette D; Simoneau JA; Uber A; Hoppeler H; Cerretelli P Int J Sports Med; 1990 Feb; 11 Suppl 1():S10-4. PubMed ID: 2323857 [TBL] [Abstract][Full Text] [Related]
7. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. Levett DZ; Radford EJ; Menassa DA; Graber EF; Morash AJ; Hoppeler H; Clarke K; Martin DS; Ferguson-Smith AC; Montgomery HE; Grocott MP; Murray AJ; FASEB J; 2012 Apr; 26(4):1431-41. PubMed ID: 22186874 [TBL] [Abstract][Full Text] [Related]
8. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle. Lundby C; Pilegaard H; Andersen JL; van Hall G; Sander M; Calbet JA J Exp Biol; 2004 Oct; 207(Pt 22):3865-71. PubMed ID: 15472017 [TBL] [Abstract][Full Text] [Related]
9. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. Jacobs RA; Lundby C J Appl Physiol (1985); 2013 Feb; 114(3):344-50. PubMed ID: 23221957 [TBL] [Abstract][Full Text] [Related]
10. Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity? Mizuno M; Savard GK; Areskog NH; Lundby C; Saltin B High Alt Med Biol; 2008; 9(4):311-7. PubMed ID: 19115916 [TBL] [Abstract][Full Text] [Related]
11. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes. Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797 [TBL] [Abstract][Full Text] [Related]
13. Normal to enhanced intrinsic mitochondrial respiration in skeletal muscle of middle- to older-aged women and men with uncomplicated type 1 diabetes. Monaco CMF; Tarnopolsky MA; Dial AG; Nederveen JP; Rebalka IA; Nguyen M; Turner LV; Perry CGR; Ljubicic V; Hawke TJ Diabetologia; 2021 Nov; 64(11):2517-2533. PubMed ID: 34392397 [TBL] [Abstract][Full Text] [Related]
14. Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude. Dawson NJ; Lyons SA; Henry DA; Scott GR Acta Physiol (Oxf); 2018 May; 223(1):e13030. PubMed ID: 29316265 [TBL] [Abstract][Full Text] [Related]
15. Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. Magalhães J; Ascensão A; Soares JM; Ferreira R; Neuparth MJ; Marques F; Duarte JA J Appl Physiol (1985); 2005 Oct; 99(4):1247-53. PubMed ID: 15905323 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle. Porter C; Hurren NM; Cotter MV; Bhattarai N; Reidy PT; Dillon EL; Durham WJ; Tuvdendorj D; Sheffield-Moore M; Volpi E; Sidossis LS; Rasmussen BB; Børsheim E Am J Physiol Endocrinol Metab; 2015 Aug; 309(3):E224-32. PubMed ID: 26037248 [TBL] [Abstract][Full Text] [Related]
17. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. Doerrier C; Garcia-Souza LF; Krumschnabel G; Wohlfarter Y; Mészáros AT; Gnaiger E Methods Mol Biol; 2018; 1782():31-70. PubMed ID: 29850993 [TBL] [Abstract][Full Text] [Related]
18. Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds. Scott GR; Richards JG; Milsom WK Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R1066-74. PubMed ID: 19657102 [TBL] [Abstract][Full Text] [Related]
19. [Effects of different hypoxic training modes on activities of mitochondrial antioxidants and respiratory chain complex in skeletal muscle after exhaustive running in rat]. Li J; Zhang YB Sheng Li Xue Bao; 2011 Feb; 63(1):55-61. PubMed ID: 21340435 [TBL] [Abstract][Full Text] [Related]