These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 2263825)

  • 1. Brain regions involved in voluntary movements as revealed by radioisotopic mapping of CBF or CMR-glucose changes.
    Lassen NA; Ingvar DH
    Rev Neurol (Paris); 1990; 146(10):620-5. PubMed ID: 2263825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional cerebral blood flow during voluntary arm and hand movements in human subjects.
    Colebatch JG; Deiber MP; Passingham RE; Friston KJ; Frackowiak RS
    J Neurophysiol; 1991 Jun; 65(6):1392-401. PubMed ID: 1875248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cortical localizations seen by the dynamic gamma-camera : a new approach in neuropsychology].
    Lassen NA; Larsen B; Orgogozo JM
    Encephale; 1978; 4(3):233-49. PubMed ID: 710363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Human supplementary motor area: a role in voluntary movements and its clinical significance].
    Ikeda A
    Rinsho Shinkeigaku; 2007 Jan; 47(1):8-20. PubMed ID: 17491331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area.
    Orgogozo JM; Larsen B
    Science; 1979 Nov; 206(4420):847-50. PubMed ID: 493986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supplementary motor area and other cortical areas in organization of voluntary movements in man.
    Roland PE; Larsen B; Lassen NA; Skinhøj E
    J Neurophysiol; 1980 Jan; 43(1):118-36. PubMed ID: 7351547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical electrical stimulation in humans. The negative motor areas.
    Lüders HO; Dinner DS; Morris HH; Wyllie E; Comair YG
    Adv Neurol; 1995; 67():115-29. PubMed ID: 8848964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Activation of supplementary motor areas during voluntary movements in man studied by measurement of focal cerebral blood flow (author's transl)].
    Orgogozo JM; Larsen B; Roland PE; Lassen NA
    Rev Neurol (Paris); 1979 Nov; 135(10):705-17. PubMed ID: 395611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Human supplementary motor area: a role in voluntary movements and its clinical significance].
    Ikeda A
    Rinsho Shinkeigaku; 2007 Nov; 47(11):723-6. PubMed ID: 18210784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The initiation of voluntary movements by the supplementary motor area.
    Eccles JC
    Arch Psychiatr Nervenkr (1970); 1982; 231(5):423-41. PubMed ID: 6812546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations.
    Ehrsson HH; Geyer S; Naito E
    J Neurophysiol; 2003 Nov; 90(5):3304-16. PubMed ID: 14615433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study.
    Kawashima R; Itoh H; Ono S; Satoh K; Furumoto S; Gotoh R; Koyama M; Yoshioka S; Takahashi T; Takahashi K; Yanagisawa T; Fukuda H
    Brain Res; 1996 Apr; 716(1-2):141-8. PubMed ID: 8738230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of motor control by the normal human brain.
    Roland PE
    Hum Neurobiol; 1984; 2(4):205-16. PubMed ID: 6715206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of repetitive transcranial magnetic stimulation applied over the premotor cortex on somatosensory-evoked potentials and regional cerebral blood flow.
    Urushihara R; Murase N; Rothwell JC; Harada M; Hosono Y; Asanuma K; Shimazu H; Nakamura K; Chikahisa S; Kitaoka K; Sei H; Morita Y; Kaji R
    Neuroimage; 2006 Jun; 31(2):699-709. PubMed ID: 16466934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of brain hemodynamic changes induced by active and passive movements: a combined arterial spin labeling-BOLD fMRI study.
    Boscolo Galazzo I; Storti SF; Formaggio E; Pizzini FB; Fiaschi A; Beltramello A; Bertoldo A; Manganotti P
    J Magn Reson Imaging; 2014 Oct; 40(4):937-48. PubMed ID: 24924449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of delayed oxygenation in ipsilateral primary motor cortex compared with contralateral side during a unimanual dominant-hand motor task using near-infrared spectroscopy.
    Shibuya K; Sadamoto T; Sato K; Moriyama M; Iwadate M
    Brain Res; 2008 May; 1210():142-7. PubMed ID: 18423579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional (14C) 2-deoxyglucose uptake during vibrissae movements evoked by rat motor cortex stimulation.
    Sharp FR; Evans K
    J Comp Neurol; 1982 Jul; 208(3):255-87. PubMed ID: 7119161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic and metabolic responses to neuronal inhibition.
    Stefanovic B; Warnking JM; Pike GB
    Neuroimage; 2004 Jun; 22(2):771-8. PubMed ID: 15193606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological activation of the human cerebral cortex during auditory perception and speech revealed by regional increases in cerebral blood flow.
    Lassen NA; Friberg L
    Scand Audiol Suppl; 1988; 30():173-6. PubMed ID: 3227264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.