These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 22638580)

  • 1. AVPpred: collection and prediction of highly effective antiviral peptides.
    Thakur N; Qureshi A; Kumar M
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W199-204. PubMed ID: 22638580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses.
    Qureshi A; Thakur N; Tandon H; Kumar M
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1147-53. PubMed ID: 24285301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).
    Qureshi A; Tandon H; Kumar M
    Biopolymers; 2015 Nov; 104(6):753-63. PubMed ID: 26213387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AVCpred: an integrated web server for prediction and design of antiviral compounds.
    Qureshi A; Kaur G; Kumar M
    Chem Biol Drug Des; 2017 Jan; 89(1):74-83. PubMed ID: 27490990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-AVPpred: Artificial Intelligence Driven Discovery of Peptide Drugs for Viral Infections.
    Sharma R; Shrivastava S; Singh SK; Kumar A; Singh AK; Saxena S
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5067-5074. PubMed ID: 34822333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses.
    Qureshi A; Thakur N; Kumar M
    J Transl Med; 2013 Dec; 11():305. PubMed ID: 24330765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance.
    Chowdhury AS; Reehl SM; Kehn-Hall K; Bishop B; Webb-Robertson BM
    Sci Rep; 2020 Nov; 10(1):19260. PubMed ID: 33159146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of anti-inflammatory proteins/peptides: an insilico approach.
    Gupta S; Sharma AK; Shastri V; Madhu MK; Sharma VK
    J Transl Med; 2017 Jan; 15(1):7. PubMed ID: 28057002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches.
    Pang Y; Yao L; Jhong JH; Wang Z; Lee TY
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34279599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico approaches for designing highly effective cell penetrating peptides.
    Gautam A; Chaudhary K; Kumar R; Sharma A; Kapoor P; Tyagi A; ; Raghava GP
    J Transl Med; 2013 Mar; 11():74. PubMed ID: 23517638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and prediction of highly effective antiviral peptides based on random forests.
    Chang KY; Yang JR
    PLoS One; 2013; 8(8):e70166. PubMed ID: 23940542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polar profile of antiviral peptides from AVPpred Database.
    Polanco C; Samaniego JL; Castañón-González JA; Buhse T
    Cell Biochem Biophys; 2014 Nov; 70(2):1469-77. PubMed ID: 24993579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy.
    Guan J; Yao L; Xie P; Chung CR; Huang Y; Chiang YC; Lee TY
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico approach for predicting toxicity of peptides and proteins.
    Gupta S; Kapoor P; Chaudhary K; Gautam A; Kumar R; ; Raghava GP
    PLoS One; 2013; 8(9):e73957. PubMed ID: 24058508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction for understanding the effectiveness of antiviral peptides.
    Nath A
    Comput Biol Chem; 2021 Dec; 95():107588. PubMed ID: 34655913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction and analysis of quorum sensing peptides based on sequence features.
    Rajput A; Gupta AK; Kumar M
    PLoS One; 2015; 10(3):e0120066. PubMed ID: 25781990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model.
    Akbar S; Raza A; Zou Q
    BMC Bioinformatics; 2024 Mar; 25(1):102. PubMed ID: 38454333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides.
    Lefin N; Herrera-Belén L; Farias JG; Beltrán JF
    Mol Divers; 2024 Aug; 28(4):2365-2374. PubMed ID: 37626205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico Approaches for the Prediction and Analysis of Antiviral Peptides: A Review.
    Charoenkwan P; Anuwongcharoen N; Nantasenamat C; Hasan MM; Shoombuatong W
    Curr Pharm Des; 2021; 27(18):2180-2188. PubMed ID: 33138759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.