These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22638789)
1. Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. Muñoz-Gutiérrez I; Oropeza R; Gosset G; Martinez A J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1141-52. PubMed ID: 22638789 [TBL] [Abstract][Full Text] [Related]
2. Continuous production of d-lactic acid from cellobiose in cell recycle fermentation using β-glucosidase-displaying Escherichia coli. Aso Y; Tsubaki M; Dang Long BH; Murakami R; Nagata K; Okano H; Phuong Dung NT; Ohara H J Biosci Bioeng; 2019 Apr; 127(4):441-446. PubMed ID: 30316699 [TBL] [Abstract][Full Text] [Related]
3. Ag43-mediated display of a thermostable β-glucosidase in Escherichia coli and its use for simultaneous saccharification and fermentation at high temperatures. Muñoz-Gutiérrez I; Moss-Acosta C; Trujillo-Martinez B; Gosset G; Martinez A Microb Cell Fact; 2014 Aug; 13():106. PubMed ID: 25078445 [TBL] [Abstract][Full Text] [Related]
4. [Construction of an ethanologenic Escherichia coli strain expressing beta-glucosidase]. Zhang Y; Luo Z; Gao Q; Bao J Sheng Wu Gong Cheng Xue Bao; 2013 Sep; 29(9):1254-67. PubMed ID: 24409689 [TBL] [Abstract][Full Text] [Related]
5. Extracellular secretion of β-glucosidase in ethanologenic E. coli enhances ethanol fermentation of cellobiose. Luo Z; Zhang Y; Bao J Appl Biochem Biotechnol; 2014 Sep; 174(2):772-83. PubMed ID: 25096392 [TBL] [Abstract][Full Text] [Related]
6. A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. Munjal N; Jawed K; Wajid S; Yazdani SS PLoS One; 2015; 10(3):e0119917. PubMed ID: 25768292 [TBL] [Abstract][Full Text] [Related]
7. Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. Soma Y; Inokuma K; Tanaka T; Ogino C; Kondo A; Okamoto M; Hanai T J Biosci Bioeng; 2012 Jul; 114(1):80-5. PubMed ID: 22561882 [TBL] [Abstract][Full Text] [Related]
8. Cloning and biochemical characterization of BglC, a beta-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Spiridonov NA; Wilson DB Curr Microbiol; 2001 Apr; 42(4):295-301. PubMed ID: 11178732 [TBL] [Abstract][Full Text] [Related]
9. Creation of a cellooligosaccharide-assimilating Escherichia coli strain by displaying active beta-glucosidase on the cell surface via a novel anchor protein. Tanaka T; Kawabata H; Ogino C; Kondo A Appl Environ Microbiol; 2011 Sep; 77(17):6265-70. PubMed ID: 21742905 [TBL] [Abstract][Full Text] [Related]
10. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast. Wang X; Liu ZL; Weber SA; Zhang X PLoS One; 2016; 11(3):e0151293. PubMed ID: 27011316 [TBL] [Abstract][Full Text] [Related]
11. Isolation and molecular characterization of high-performance cellobiose-fermenting spontaneous mutants of ethanologenic Escherichia coli KO11 containing the Klebsiella oxytoca casAB operon. Moniruzzaman M; Lai X; York SW; Ingram LO Appl Environ Microbiol; 1997 Dec; 63(12):4633-7. PubMed ID: 9406380 [TBL] [Abstract][Full Text] [Related]
12. Creation of cellobiose and xylooligosaccharides-coutilizing Escherichia coli displaying both β-glucosidase and β-xylosidase on its cell surface. Tanaka T; Hirata Y; Nakano M; Kawabata H; Kondo A ACS Synth Biol; 2014 Jul; 3(7):446-53. PubMed ID: 24156762 [TBL] [Abstract][Full Text] [Related]
13. Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose. Ríos-Fránquez FJ; González-Bautista E; Ponce-Noyola T; Ramos-Valdivia AC; Poggi-Varaldo HM; García-Mena J; Martinez A Arch Microbiol; 2017 May; 199(4):605-611. PubMed ID: 28138738 [TBL] [Abstract][Full Text] [Related]
14. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis. Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047 [TBL] [Abstract][Full Text] [Related]
15. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Saitoh S; Hasunuma T; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354 [TBL] [Abstract][Full Text] [Related]
16. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium. Fernández-Sandoval MT; Huerta-Beristain G; Trujillo-Martinez B; Bustos P; González V; Bolivar F; Gosset G; Martinez A Appl Microbiol Biotechnol; 2012 Dec; 96(5):1291-300. PubMed ID: 22669633 [TBL] [Abstract][Full Text] [Related]
17. Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass. Edwards MC; Henriksen ED; Yomano LP; Gardner BC; Sharma LN; Ingram LO; Doran Peterson J Appl Environ Microbiol; 2011 Aug; 77(15):5184-91. PubMed ID: 21666025 [TBL] [Abstract][Full Text] [Related]
19. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279 [TBL] [Abstract][Full Text] [Related]
20. Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose. Zhang L; Guo ZP; Ding ZY; Wang ZX; Shi GY Prikl Biokhim Mikrobiol; 2012; 48(2):243-8. PubMed ID: 22586919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]