BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22638843)

  • 1. Arsenite oxidation in Ancylobacter dichloromethanicus As3-1b strain: detection of genes involved in arsenite oxidation and CO2 fixation.
    Andreoni V; Zanchi R; Cavalca L; Corsini A; Romagnoli C; Canzi E
    Curr Microbiol; 2012 Aug; 65(2):212-8. PubMed ID: 22638843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenite oxidation by a facultative chemolithotrophic bacterium SDB1 isolated from mine tailing.
    Lugtu RT; Choi SC; Oh YS
    J Microbiol; 2009 Dec; 47(6):686-92. PubMed ID: 20127460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments.
    Garcia-Dominguez E; Mumford A; Rhine ED; Paschal A; Young LY
    FEMS Microbiol Ecol; 2008 Nov; 66(2):401-10. PubMed ID: 18717738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies.
    Santini JM; Sly LI; Schnagl RD; Macy JM
    Appl Environ Microbiol; 2000 Jan; 66(1):92-7. PubMed ID: 10618208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome sequence of the facultative anaerobic arsenite-oxidizing and nitrate-reducing bacterium Acidovorax sp. strain NO1.
    Huang Y; Li H; Rensing C; Zhao K; Johnstone L; Wang G
    J Bacteriol; 2012 Mar; 194(6):1635-6. PubMed ID: 22374962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenite oxidation by a facultative chemolithoautotrophic Sinorhizobium sp. KGO-5 isolated from arsenic-contaminated soil.
    Dong D; Ohtsuka T; Dong DT; Amachi S
    Biosci Biotechnol Biochem; 2014; 78(11):1963-70. PubMed ID: 25051896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics.
    Cavalca L; Zanchi R; Corsini A; Colombo M; Romagnoli C; Canzi E; Andreoni V
    Syst Appl Microbiol; 2010 Apr; 33(3):154-64. PubMed ID: 20303688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The NT-26 cytochrome c552 and its role in arsenite oxidation.
    Santini JM; Kappler U; Ward SA; Honeychurch MJ; vanden Hoven RN; Bernhardt PV
    Biochim Biophys Acta; 2007 Feb; 1767(2):189-96. PubMed ID: 17306216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of arsenite by two β-proteobacteria isolated from soil.
    Bachate SP; Khapare RM; Kodam KM
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2135-45. PubMed ID: 21983709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil.
    Bahar MM; Megharaj M; Naidu R
    Biodegradation; 2012 Nov; 23(6):803-12. PubMed ID: 22760225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California.
    Fisher JC; Hollibaugh JT
    Appl Environ Microbiol; 2008 May; 74(9):2588-94. PubMed ID: 18326681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.
    Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S
    Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular Response of Sinorhizobium sp. Strain A2 during Arsenite Oxidation.
    Fukushima K; Huang H; Hamamura N
    Microbes Environ; 2015; 30(4):330-4. PubMed ID: 26477790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44.
    Cai L; Rensing C; Li X; Wang G
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):715-25. PubMed ID: 19283378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome sequence of the moderately halotolerant, arsenite-oxidizing bacterium Pseudomonas stutzeri TS44.
    Li X; Gong J; Hu Y; Cai L; Johnstone L; Grass G; Rensing C; Wang G
    J Bacteriol; 2012 Aug; 194(16):4473-4. PubMed ID: 22843599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26.
    Santini JM; vanden Hoven RN
    J Bacteriol; 2004 Mar; 186(6):1614-9. PubMed ID: 14996791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome sequence of the highly efficient arsenite-oxidizing bacterium Achromobacter arsenitoxydans SY8.
    Li X; Hu Y; Gong J; Lin Y; Johnstone L; Rensing C; Wang G
    J Bacteriol; 2012 Mar; 194(5):1243-4. PubMed ID: 22328747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines.
    Chang JS; Yoon IH; Kim KW
    J Microbiol Biotechnol; 2007 May; 17(5):812-21. PubMed ID: 18051304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodulation of central carbon metabolic pathway in response to arsenite exposure in Rhodococcus sp. strain NAU-1.
    Jain R; Adhikary H; Jha S; Jha A; Kumar GN
    Microb Biotechnol; 2012 Nov; 5(6):764-72. PubMed ID: 23062201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1.
    Oremland RS; Hoeft SE; Santini JM; Bano N; Hollibaugh RA; Hollibaugh JT
    Appl Environ Microbiol; 2002 Oct; 68(10):4795-802. PubMed ID: 12324322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.