These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22638843)

  • 21. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment.
    Handley KM; Héry M; Lloyd JR
    Int J Syst Evol Microbiol; 2009 Apr; 59(Pt 4):886-92. PubMed ID: 19329625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional genomics of plasmid pSinA of Sinorhizobium sp. M14 encoding genes for the arsenite oxidation and arsenic resistance.
    Drewniak L; Dziewit L; Ciezkowska M; Gawor J; Gromadka R; Sklodowska A
    J Biotechnol; 2013 Apr; 164(4):479-88. PubMed ID: 23454063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional genes and thermophilic microorganisms responsible for arsenite oxidation from the shallow sediment of an untraversed hot spring outlet.
    Yang Y; Mu Y; Zeng XC; Wu W; Yuan J; Liu Y; Guoji E; Luo F; Chen X; Li H; Wang J
    Ecotoxicology; 2017 May; 26(4):490-501. PubMed ID: 28251437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11.
    Koechler S; Arsène-Ploetze F; Brochier-Armanet C; Goulhen-Chollet F; Heinrich-Salmeron A; Jost B; Lièvremont D; Philipps M; Plewniak F; Bertin PN; Lett MC
    Res Microbiol; 2015 Apr; 166(3):205-14. PubMed ID: 25753102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24.
    Branco R; Francisco R; Chung AP; Morais PV
    Appl Environ Microbiol; 2009 Aug; 75(15):5141-7. PubMed ID: 19525272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Depth-resolved abundance and diversity of arsenite-oxidizing bacteria in the groundwater of Beimen, a blackfoot disease endemic area of southwestern Taiwan.
    Das S; Kar S; Jean JS; Rathod J; Chakraborty S; Liu HS; Bundschuh J
    Water Res; 2013 Dec; 47(19):6983-91. PubMed ID: 24169515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study.
    Duquesne K; Lieutaud A; Ratouchniak J; Muller D; Lett MC; Bonnefoy V
    Environ Microbiol; 2008 Jan; 10(1):228-37. PubMed ID: 17894815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of the recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidation ability.
    Drewniak L; Ciezkowska M; Radlinska M; Sklodowska A
    J Biotechnol; 2015 Feb; 196-197():42-51. PubMed ID: 25617684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers.
    Rhine ED; Ní Chadhain SM; Zylstra GJ; Young LY
    Biochem Biophys Res Commun; 2007 Mar; 354(3):662-7. PubMed ID: 17257587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene.
    Bahar MM; Megharaj M; Naidu R
    J Hazard Mater; 2013 Nov; 262():997-1003. PubMed ID: 23290483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.
    Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP
    Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organization and regulation of the arsenite oxidase operon of the moderately acidophilic and facultative chemoautotrophic Thiomonas arsenitoxydans.
    Slyemi D; Moinier D; Talla E; Bonnefoy V
    Extremophiles; 2013 Nov; 17(6):911-20. PubMed ID: 23974983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin.
    Corsini A; Colombo M; Muyzer G; Cavalca L
    Antonie Van Leeuwenhoek; 2015 Sep; 108(3):673-84. PubMed ID: 26149126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic speciation, the abundance of arsenite-oxidizing bacteria and microbial community structures in groundwater, surface water, and soil from a gold mine.
    Sonthiphand P; Kraidech S; Polart S; Chotpantarat S; Kusonmano K; Uthaipaisanwong P; Rangsiwutisak C; Luepromchai E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(7):769-785. PubMed ID: 34038319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenite oxidation by the phyllosphere bacterial community associated with Wolffia australiana.
    Xie WY; Su JQ; Zhu YG
    Environ Sci Technol; 2014 Aug; 48(16):9668-74. PubMed ID: 25079094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenite-induced changes in abundance and expression of arsenite transporter and arsenite oxidase genes of a soil microbial community.
    Poirel J; Joulian C; Leyval C; Billard P
    Res Microbiol; 2013 Jun; 164(5):457-65. PubMed ID: 23396038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria.
    Zeng XC; He Z; Chen X; Cao QAD; Li H; Wang Y
    Ecotoxicol Environ Saf; 2018 Dec; 165():1-10. PubMed ID: 30173020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of arsenic oxidation potential of Microvirga indica S-MI1b sp. nov. in heavy metal polluted environment.
    Tapase SR; Kodam KM
    Chemosphere; 2018 Mar; 195():1-10. PubMed ID: 29241075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.