These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22639109)
1. Local redox-cycling-based electrochemical chip device with deep microwells for evaluation of embryoid bodies. Ino K; Nishijo T; Arai T; Kanno Y; Takahashi Y; Shiku H; Matsue T Angew Chem Int Ed Engl; 2012 Jul; 51(27):6648-52. PubMed ID: 22639109 [No Abstract] [Full Text] [Related]
2. A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies. Kanno Y; Ino K; Shiku H; Matsue T Lab Chip; 2015 Dec; 15(23):4404-14. PubMed ID: 26481771 [TBL] [Abstract][Full Text] [Related]
3. LSI-based amperometric sensor for real-time monitoring of embryoid bodies. Sen M; Ino K; Inoue KY; Arai T; Nishijo T; Suda A; Kunikata R; Shiku H; Matsue T Biosens Bioelectron; 2013 Oct; 48():12-8. PubMed ID: 23644006 [TBL] [Abstract][Full Text] [Related]
4. A Pt layer/Pt disk electrode configuration to evaluate respiration and alkaline phosphatase activities of mouse embryoid bodies. Obregon R; Horiguchi Y; Arai T; Abe S; Zhou Y; RyosukeTakahashi ; Hisada A; Ino K; Shiku H; Matsue T Talanta; 2012 May; 94():30-5. PubMed ID: 22608410 [TBL] [Abstract][Full Text] [Related]
5. Densified electrochemical sensors based on local redox cycling between vertically separated electrodes in substrate generation/chip collection and extended feedback modes. Ino K; Kanno Y; Nishijo T; Komaki H; Yamada Y; Yoshida S; Takahashi Y; Shiku H; Matsue T Anal Chem; 2014 Apr; 86(8):4016-23. PubMed ID: 24621106 [TBL] [Abstract][Full Text] [Related]
6. Accumulation and detection of secreted proteins from single cells for reporter gene assays using a local redox cycling-based electrochemical (LRC-EC) chip device. Sen M; Ino K; Shiku H; Matsue T Lab Chip; 2012 Nov; 12(21):4328-35. PubMed ID: 22941152 [TBL] [Abstract][Full Text] [Related]
7. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling. Xia N; Zhang Y; Wei X; Huang Y; Liu L Anal Chim Acta; 2015 Jun; 878():95-101. PubMed ID: 26002330 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical detection for dynamic analyses of a redox component in droplets using a local redox cycling-based electrochemical (LRC-EC) chip device. Ino K; Kanno Y; Nishijo T; Goto T; Arai T; Takahashi Y; Shiku H; Matsue T Chem Commun (Camb); 2012 Sep; 48(68):8505-7. PubMed ID: 22810361 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical gene-function analysis for single cells with addressable microelectrode/microwell arrays. Lin Z; Takahashi Y; Murata T; Takeda M; Ino K; Shiku H; Matsue T Angew Chem Int Ed Engl; 2009; 48(11):2044-6. PubMed ID: 19191275 [TBL] [Abstract][Full Text] [Related]
11. An electroactive fiber optic chip for spectroelectrochemical characterization of ultra-thin redox-active films. Beam BM; Armstrong NR; Mendes SB Analyst; 2009 Mar; 134(3):454-9. PubMed ID: 19238279 [TBL] [Abstract][Full Text] [Related]
12. Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy. Neugebauer S; Zimdars A; Liepold P; Gebala M; Schuhmann W; Hartwich G Chembiochem; 2009 May; 10(7):1193-9. PubMed ID: 19353601 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical based detection of microRNA, mir21 in breast cancer cells. Kilic T; Topkaya SN; Ozkan Ariksoysal D; Ozsoz M; Ballar P; Erac Y; Gozen O Biosens Bioelectron; 2012; 38(1):195-201. PubMed ID: 22776181 [TBL] [Abstract][Full Text] [Related]
14. A graphene-based Au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers. Liu B; Tang D; Tang J; Su B; Li Q; Chen G Analyst; 2011 Jun; 136(11):2218-20. PubMed ID: 21384013 [TBL] [Abstract][Full Text] [Related]
16. On-line removal of redox-active interferents by a porous electrode before amperometric blood glucose determination. Deng C; Peng Y; Su L; Liu YN; Zhou F Anal Chim Acta; 2012 Mar; 719():52-6. PubMed ID: 22340530 [TBL] [Abstract][Full Text] [Related]
17. Simulation Analysis of Positional Relationship between Embryoid Bodies and Sensors on an LSI-based Amperometric Device for Electrochemical Imaging of Alkaline Phosphatase Activity. Kanno Y; Ino K; Inoue KY; Suda A; Kunikata R; Matsudaira M; Shiku H; Matsue T Anal Sci; 2015; 31(7):715-9. PubMed ID: 26165297 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical biosensors at the nanoscale. Wei D; Bailey MJ; Andrew P; Ryhänen T Lab Chip; 2009 Aug; 9(15):2123-31. PubMed ID: 19606287 [TBL] [Abstract][Full Text] [Related]
19. A novel label-free electrochemical aptasensor for thrombin based on the {nano-Au/thionine}n multilayer films as redox probes. Yuan Y; Yuan R; Chai Y; Zhuo Y; Liu Z; Mao L; Guan S; Qian X Anal Chim Acta; 2010 Jun; 668(2):171-6. PubMed ID: 20493294 [TBL] [Abstract][Full Text] [Related]