BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22639159)

  • 1. Mechanisms of immune evasion by gliomas.
    Rolle CE; Sengupta S; Lesniak MS
    Adv Exp Med Biol; 2012; 746():53-76. PubMed ID: 22639159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of regulatory T-cells in glioma immunology.
    Ooi YC; Tran P; Ung N; Thill K; Trang A; Fong BM; Nagasawa DT; Lim M; Yang I
    Clin Neurol Neurosurg; 2014 Apr; 119():125-32. PubMed ID: 24582432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of tolerance induced by transforming growth factor-beta-treated antigen-presenting cells: CD8 regulatory T cells inhibit the effector phase of the immune response in primed mice through a mechanism involving Fas ligand.
    Kosiewicz MM; Alard P; Liang S; Clark SL
    Int Immunol; 2004 May; 16(5):697-706. PubMed ID: 15096489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses.
    Hussain SF; Yang D; Suki D; Aldape K; Grimm E; Heimberger AB
    Neuro Oncol; 2006 Jul; 8(3):261-79. PubMed ID: 16775224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of macrophagic prostaglandin E2 synthesis by glioma cells.
    Nakano Y; Kuroda E; Kito T; Yokota A; Yamashita U
    J Neurosurg; 2006 Apr; 104(4):574-82. PubMed ID: 16619662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune defects observed in patients with primary malignant brain tumors.
    Dix AR; Brooks WH; Roszman TL; Morford LA
    J Neuroimmunol; 1999 Dec; 100(1-2):216-32. PubMed ID: 10695732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines.
    Ueda R; Fujita M; Zhu X; Sasaki K; Kastenhuber ER; Kohanbash G; McDonald HA; Harper J; Lonning S; Okada H
    Clin Cancer Res; 2009 Nov; 15(21):6551-9. PubMed ID: 19861464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific anti-tumor immunity: differences in DC function, TGF-beta production and numbers of intratumoral Foxp3+ Treg.
    Biollaz G; Bernasconi L; Cretton C; Püntener U; Frei K; Fontana A; Suter T
    Eur J Immunol; 2009 May; 39(5):1323-33. PubMed ID: 19337997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelin B receptor promotes the proliferation and immune escape of malignant gliomas.
    Pan DS; Feng SZ; Cao P; Li JJ
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1230-1235. PubMed ID: 28841806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model.
    Chirasani SR; Leukel P; Gottfried E; Hochrein J; Stadler K; Neumann B; Oefner PJ; Gronwald W; Bogdahn U; Hau P; Kreutz M; Grauer OM
    Int J Cancer; 2013 Feb; 132(4):843-53. PubMed ID: 22752934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model of tumor-immune interactions.
    Robertson-Tessi M; El-Kareh A; Goriely A
    J Theor Biol; 2012 Feb; 294():56-73. PubMed ID: 22051568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape.
    Platten M; Wick W; Weller M
    Microsc Res Tech; 2001 Feb; 52(4):401-10. PubMed ID: 11170299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TLR2 Promotes Glioma Immune Evasion by Downregulating MHC Class II Molecules in Microglia.
    Qian J; Luo F; Yang J; Liu J; Liu R; Wang L; Wang C; Deng Y; Lu Z; Wang Y; Lu M; Wang JY; Chu Y
    Cancer Immunol Res; 2018 Oct; 6(10):1220-1233. PubMed ID: 30131377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of immunosuppressive mechanisms in a mouse glioma model.
    Ksendzovsky A; Feinstein D; Zengou R; Sharp A; Polak P; Lichtor T; Glick RP
    J Neurooncol; 2009 May; 93(1):107-14. PubMed ID: 19430886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells.
    Eisele G; Wischhusen J; Mittelbronn M; Meyermann R; Waldhauer I; Steinle A; Weller M; Friese MA
    Brain; 2006 Sep; 129(Pt 9):2416-25. PubMed ID: 16891318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells.
    Taylor A; Verhagen J; Blaser K; Akdis M; Akdis CA
    Immunology; 2006 Apr; 117(4):433-42. PubMed ID: 16556256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory lymphocytes and intestinal inflammation.
    Izcue A; Coombes JL; Powrie F
    Annu Rev Immunol; 2009; 27():313-38. PubMed ID: 19302043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain.
    Weller M; Fontana A
    Brain Res Brain Res Rev; 1995 Sep; 21(2):128-51. PubMed ID: 8866671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of foxp3+ T regulatory cell-mediated suppression.
    Shevach EM
    Immunity; 2009 May; 30(5):636-45. PubMed ID: 19464986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of regulatory T cells in malignant glioma.
    Sonabend AM; Rolle CE; Lesniak MS
    Anticancer Res; 2008; 28(2B):1143-50. PubMed ID: 18505050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.