BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22639189)

  • 1. Mercury toxicity, molecular response and tolerance in higher plants.
    Chen J; Yang ZM
    Biometals; 2012 Oct; 25(5):847-57. PubMed ID: 22639189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead uptake, toxicity, and detoxification in plants.
    Pourrut B; Shahid M; Dumat C; Winterton P; Pinelli E
    Rev Environ Contam Toxicol; 2011; 213():113-36. PubMed ID: 21541849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area.
    Moreno-Jiménez E; Gamarra R; Carpena-Ruiz RO; Millán R; Peñalosa JM; Esteban E
    Chemosphere; 2006 Jun; 63(11):1969-73. PubMed ID: 16293291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.).
    Shiyab S; Chen J; Han FX; Monts DL; Matta FB; Gu M; Su Y; Masad MA
    Environ Toxicol; 2009 Oct; 24(5):462-71. PubMed ID: 19003913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China.
    Horvat M; Nolde N; Fajon V; Jereb V; Logar M; Lojen S; Jacimovic R; Falnoga I; Liya Q; Faganeli J; Drobne D
    Sci Total Environ; 2003 Mar; 304(1-3):231-56. PubMed ID: 12663187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China.
    Xiao T; Guha J; Boyle D; Liu CQ; Chen J
    Sci Total Environ; 2004 Jan; 318(1-3):223-44. PubMed ID: 14654287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity.
    Shahid M; Ferrand E; Schreck E; Dumat C
    Rev Environ Contam Toxicol; 2013; 221():107-27. PubMed ID: 23090631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa.
    Sobrino-Plata J; Ortega-Villasante C; Flores-Cáceres ML; Escobar C; Del Campo FF; Hernández LE
    Chemosphere; 2009 Nov; 77(7):946-54. PubMed ID: 19732935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms to cope with arsenic or cadmium excess in plants.
    Verbruggen N; Hermans C; Schat H
    Curr Opin Plant Biol; 2009 Jun; 12(3):364-72. PubMed ID: 19501016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants.
    Zhou ZS; Wang SJ; Yang ZM
    Chemosphere; 2008 Feb; 70(8):1500-9. PubMed ID: 17905409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide.
    Meng de K; Chen J; Yang ZM
    J Hazard Mater; 2011 Feb; 186(2-3):1823-9. PubMed ID: 21227573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study of inorganic and methylmercury bioaccumulation by four species of freshwater rooted macrophytes from water and sediment contamination sources.
    Ribeyre F; Boudou A
    Ecotoxicol Environ Saf; 1994 Aug; 28(3):270-86. PubMed ID: 7525222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide and gene regulation in plants.
    Grün S; Lindermayr C; Sell S; Durner J
    J Exp Bot; 2006; 57(3):507-16. PubMed ID: 16396997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elicitor signal transduction leading to production of plant secondary metabolites.
    Zhao J; Davis LC; Verpoorte R
    Biotechnol Adv; 2005 Jun; 23(4):283-333. PubMed ID: 15848039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of tolerance of Chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide.
    Wei YY; Zheng Q; Liu ZP; Yang ZM
    Plant Cell Physiol; 2011 Sep; 52(9):1665-75. PubMed ID: 21813461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.
    Rodriguez L; Rincón J; Asencio I; Rodríguez-Castellanos L
    Int J Phytoremediation; 2007; 9(1):1-13. PubMed ID: 18246711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury uptake by Silene vulgaris grown on contaminated spiked soils.
    Pérez-Sanz A; Millán R; Sierra MJ; Alarcón R; García P; Gil-Díaz M; Vazquez S; Lobo MC
    J Environ Manage; 2012 Mar; 95 Suppl():S233-7. PubMed ID: 20708330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania.
    Taylor H; Appleton JD; Lister R; Smith B; Chitamweba D; Mkumbo O; Machiwa JF; Tesha AL; Beinhoff C
    Sci Total Environ; 2005 May; 343(1-3):111-33. PubMed ID: 15862840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of mercury pollution and its source in the soils and vegetables in Guilin area, China.
    Qian J; Zhang L; Chen H; Hou M; Niu Y; Xu Z; Liu H
    Bull Environ Contam Toxicol; 2009 Dec; 83(6):920-5. PubMed ID: 19760342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.