These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22639208)

  • 1. Flow cytometry in environmental microbiology: a rapid approach for the isolation of single cells for advanced molecular biology analysis.
    Ferrari BC; Winsley TJ; Bergquist PL; Van Dorst J
    Methods Mol Biol; 2012; 881():3-26. PubMed ID: 22639208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of flow cytometric methods for single-cell analysis in environmental microbiology.
    Czechowska K; Johnson DR; van der Meer JR
    Curr Opin Microbiol; 2008 Jun; 11(3):205-12. PubMed ID: 18562243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry.
    Lenaerts J; Lappin-Scott HM; Porter J
    Appl Environ Microbiol; 2007 Mar; 73(6):2020-3. PubMed ID: 17277208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific sorting of single bacterial cells with microfabricated fluorescence-activated cell sorting and tyramide signal amplification fluorescence in situ hybridization.
    Chen CH; Cho SH; Chiang HI; Tsai F; Zhang K; Lo YH
    Anal Chem; 2011 Oct; 83(19):7269-75. PubMed ID: 21809842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-expressing viruses allow rapid identification and separation of rare tumor cells in spiked samples of human whole blood.
    Fong SM; Lee MK; Adusumilli PS; Kelly KJ
    Surgery; 2009 Sep; 146(3):498-505. PubMed ID: 19715807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-solution fluorescence in situ hybridization and fluorescence-activated cell sorting for single cell and population genome recovery.
    Haroon MF; Skennerton CT; Steen JA; Lachner N; Hugenholtz P; Tyson GW
    Methods Enzymol; 2013; 531():3-19. PubMed ID: 24060113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometry for microbial sensing in environmental sustainability applications: current status and future prospects.
    Gruden C; Skerlos S; Adriaens P
    FEMS Microbiol Ecol; 2004 Jul; 49(1):37-49. PubMed ID: 19712382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives.
    Hugenholtz P; Tyson GW; Webb RI; Wagner AM; Blackall LL
    Appl Environ Microbiol; 2001 Jan; 67(1):411-9. PubMed ID: 11133473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous flow cytometric analysis of two cell surface markers, telomere length, and DNA content.
    Schmid I; Dagarag MD; Hausner MA; Matud JL; Just T; Effros RB; Jamieson BD
    Cytometry; 2002 Nov; 49(3):96-105. PubMed ID: 12442309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent probes and flow cytometry: new insights into environmental bacteriology.
    Porter J; Deere D; Pickup R; Edwards C
    Cytometry; 1996 Feb; 23(2):91-6. PubMed ID: 8742166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification.
    Manti A; Boi P; Amalfitano S; Puddu A; Papa S
    J Microbiol Methods; 2011 Dec; 87(3):309-15. PubMed ID: 21963488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence in situ hybridization for the identification of environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Mol Biol; 2007; 353():153-64. PubMed ID: 17332640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted genomics of flow cytometrically sorted cultured and uncultured microbial groups.
    Mazard S; Ostrowski M; Holland R; Zubkov MV; Scanlan DJ
    Methods Mol Biol; 2014; 1096():203-12. PubMed ID: 24515371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.
    Amann R; Fuchs BM
    Nat Rev Microbiol; 2008 May; 6(5):339-48. PubMed ID: 18414500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations.
    Yilmaz S; Haroon MF; Rabkin BA; Tyson GW; Hugenholtz P
    ISME J; 2010 Oct; 4(10):1352-6. PubMed ID: 20505753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow cytometric analysis of microorganisms.
    Winson MK; Davey HM
    Methods; 2000 Jul; 21(3):231-40. PubMed ID: 10873477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fixation procedures for flow cytometric analysis of environmental bacteria.
    Günther S; Hübschmann T; Rudolf M; Eschenhagen M; Röske I; Harms H; Müller S
    J Microbiol Methods; 2008 Sep; 75(1):127-34. PubMed ID: 18584902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence in situ hybridization of bacterial cell suspensions.
    Parsley LC; Newman MM; Liles MR
    Cold Spring Harb Protoc; 2010 Sep; 2010(9):pdb.prot5493. PubMed ID: 20810640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry.
    Burmølle M; Hansen LH; Oregaard G; Sørensen SJ
    Microb Ecol; 2003 Mar; 45(3):226-36. PubMed ID: 12658522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple detection of small amounts of Pseudomonas cells in milk by using a microfluidic device.
    Yamaguchi N; Ohba H; Nasu M
    Lett Appl Microbiol; 2006 Dec; 43(6):631-6. PubMed ID: 17083709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.