BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22639241)

  • 1. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions.
    Shih YH; Liu WS; Su YF
    Environ Toxicol Chem; 2012 Aug; 31(8):1693-8. PubMed ID: 22639241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.
    Nur Y; Lead JR; Baalousha M
    Sci Total Environ; 2015 Dec; 535():45-53. PubMed ID: 25432129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water.
    Peng YH; Tso CP; Tsai YC; Zhuang CM; Shih YH
    Sci Total Environ; 2015 Oct; 530-531():183-190. PubMed ID: 26042532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation and charge behavior of metallic and nonmetallic nanoparticles in the presence of competing similarly-charged inorganic ions.
    Mukherjee B; Weaver JW
    Environ Sci Technol; 2010 May; 44(9):3332-8. PubMed ID: 20369881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.
    Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F
    Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of extracellular polymeric substances on the aggregation kinetics of TiO
    Lin D; Drew Story S; Walker SL; Huang Q; Cai P
    Water Res; 2016 Nov; 104():381-388. PubMed ID: 27576157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Cd(II) on the stability of humic acid-coated nano-TiO
    Wang L; Lu Y; Yang C; Chen C; Huang W; Dang Z
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23144-23152. PubMed ID: 28828557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.
    Esfandyari Bayat A; Junin R; Derahman MN; Samad AA
    Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of water chemistry on the destabilization and sedimentation of commercial TiO2 nanoparticles: Role of double-layer compression and charge neutralization.
    Hsiung CE; Lien HL; Galliano AE; Yeh CS; Shih YH
    Chemosphere; 2016 May; 151():145-51. PubMed ID: 26938678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions.
    Romanello MB; Fidalgo de Cortalezzi MM
    Water Res; 2013 Aug; 47(12):3887-98. PubMed ID: 23579091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Stability of C60 nanoparticles in aquatic systems].
    Fang H; Shen BB; Jing J; Lu JL; Wang Y
    Huan Jing Ke Xue; 2014 Apr; 35(4):1337-42. PubMed ID: 24946585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics.
    Bouhaik IS; Leroy P; Ollivier P; Azaroual M; Mercury L
    J Colloid Interface Sci; 2013 Sep; 406():75-85. PubMed ID: 23806415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a typical antibiotic (tetracycline) on the aggregation of TiO
    Qi N; Wang P; Wang C; Ao Y
    J Hazard Mater; 2018 Jan; 341():187-197. PubMed ID: 28780433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid.
    Liu J; Dai C; Hu Y
    Environ Res; 2018 Feb; 161():49-60. PubMed ID: 29101829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli.
    Pagnout C; Jomini S; Dadhwal M; Caillet C; Thomas F; Bauda P
    Colloids Surf B Biointerfaces; 2012 Apr; 92():315-21. PubMed ID: 22218337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles.
    Parsai T; Kumar A
    Chemosphere; 2019 Nov; 235():457-469. PubMed ID: 31272006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase.
    Liu X; Chen G; Su C
    J Colloid Interface Sci; 2011 Nov; 363(1):84-91. PubMed ID: 21803366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y
    Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.