These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 22639403)

  • 1. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial fuel cells.
    Wei J; Liang P; Zuo K; Cao X; Huang X
    ChemSusChem; 2012 Jun; 5(6):1065-70. PubMed ID: 22639403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells.
    Wei J; Liang P; Cao X; Huang X
    Bioresour Technol; 2011 Nov; 102(22):10431-5. PubMed ID: 21924899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power generation by packed-bed air-cathode microbial fuel cells.
    Zhang X; Shi J; Liang P; Wei J; Huang X; Zhang C; Logan BE
    Bioresour Technol; 2013 Aug; 142():109-14. PubMed ID: 23732924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power production enhancement with a polyaniline modified anode in microbial fuel cells.
    Lai B; Tang X; Li H; Du Z; Liu X; Zhang Q
    Biosens Bioelectron; 2011 Oct; 28(1):373-7. PubMed ID: 21820889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials.
    Sun Y; Wei J; Liang P; Huang X
    Bioresour Technol; 2011 Dec; 102(23):10886-91. PubMed ID: 21983409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation.
    Li F; Sharma Y; Lei Y; Li B; Zhou Q
    Appl Biochem Biotechnol; 2010 Jan; 160(1):168-81. PubMed ID: 19172235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells.
    Cheng S; Logan BE
    Bioresour Technol; 2011 Mar; 102(6):4468-73. PubMed ID: 21273062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of hydrolysis and fermentation rates in microbial fuel cells.
    Velasquez-Orta SB; Yu E; Katuri KP; Head IM; Curtis TP; Scott K
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):789-98. PubMed ID: 21347728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.
    Liang P; Wang H; Xia X; Huang X; Mo Y; Cao X; Fan M
    Biosens Bioelectron; 2011 Feb; 26(6):3000-4. PubMed ID: 21190836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power generation in MFCs with architectures based on tubular cathodes or fully tubular reactors.
    Zuo Y; Logan BE
    Water Sci Technol; 2011; 64(11):2253-8. PubMed ID: 22156130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in electrodes for microbial fuel cells.
    Wei J; Liang P; Huang X
    Bioresour Technol; 2011 Oct; 102(20):9335-44. PubMed ID: 21855328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving performance of MFC by design alteration and adding cathodic electrolytes.
    Jadhav GS; Ghangrekar MM
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):319-32. PubMed ID: 18438635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes.
    Zhu N; Chen X; Zhang T; Wu P; Li P; Wu J
    Bioresour Technol; 2011 Jan; 102(1):422-6. PubMed ID: 20594833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells.
    Liu J; Qiao Y; Guo CX; Lim S; Song H; Li CM
    Bioresour Technol; 2012 Jun; 114():275-80. PubMed ID: 22483349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode.
    He YR; Xiao X; Li WW; Sheng GP; Yan FF; Yu HQ; Yuan H; Wu LJ
    Phys Chem Chem Phys; 2012 Jul; 14(28):9966-71. PubMed ID: 22699925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air-cathode structure optimization in separator-coupled microbial fuel cells.
    Zhang X; Sun H; Liang P; Huang X; Chen X; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):267-71. PubMed ID: 21996324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.
    Oh SE; Logan BE
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):162-9. PubMed ID: 16167143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.