These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22639553)

  • 1. AN AUGMENTED IMMERSED INTERFACE METHOD FOR MOVING STRUCTURES WITH MASS.
    Hao J; Li Z; Lubkin SR
    Discrete Continuous Dyn Syst Ser B; 2012 Jun; 17(4):1175-1184. PubMed ID: 22639553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Sensitivity Analysis for the Flow Past Obstacles Problem with Respect to the Reynolds Number.
    Ito K; Li Z; Qiao Z
    Adv Appl Math Mech; 2012 Feb; 4(1):21-35. PubMed ID: 24910780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Immersed Interface Method for Discrete Surfaces.
    Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE
    J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems.
    Li Z; Song P
    Comput Struct; 2013 Jun; 122():249-258. PubMed ID: 23794763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial gauge methods for incompressible fluid dynamics.
    Saye R
    Sci Adv; 2016 Jun; 2(6):e1501869. PubMed ID: 27386567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.
    Borazjani I; Ge L; Sotiropoulos F
    J Comput Phys; 2008 Aug; 227(16):7587-7620. PubMed ID: 20981246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
    Mittal R; Dong H; Bozkurttas M; Najjar FM; Vargas A; von Loebbecke A
    J Comput Phys; 2008; 227(10):4825-4852. PubMed ID: 20216919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of fluid-structure and fluid-mediated structure-structure interactions in Stokes regime using immersed boundary method.
    Baghalnezhad M; Dadvand A; Mirzaee I
    ScientificWorldJournal; 2014; 2014():782534. PubMed ID: 24711736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of surface tension and surface elasticity of a fluid-fluid interface on the motion of a particle immersed near the interface.
    Felderhof BU
    J Chem Phys; 2006 Oct; 125(14):144718. PubMed ID: 17042642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-similarity in incompressible Navier-Stokes equations.
    Ercan A; Kavvas ML
    Chaos; 2015 Dec; 25(12):123126. PubMed ID: 26723165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement.
    Lee P; Griffith BE; Peskin CS
    J Comput Phys; 2010 Jul; 229(13):5208-5227. PubMed ID: 20454540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling of the dynamics of bubble oscillations subjected to fast variations in the ambient pressure with a coupled level set and volume of fluid method.
    Chakraborty I
    Phys Rev E; 2019 Apr; 99(4-1):043107. PubMed ID: 31108714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of bubble dynamics in a Phan-Thien-Tanner liquid: non-linear shape and size oscillatory response under periodic pressure.
    Foteinopoulou K; Laso M
    Ultrasonics; 2010 Aug; 50(8):758-76. PubMed ID: 20385399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approximation of Classical Two-Phase Flows of Viscous Incompressible Fluids by a Navier-Stokes/Allen-Cahn System.
    Abels H; Fischer J; Moser M
    Arch Ration Mech Anal; 2024; 248(5):77. PubMed ID: 39239088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.