These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22639591)

  • 1. Mining disease-resistance genes in roses: functional and molecular characterization of the rdr1 locus.
    Terefe-Ayana D; Yasmin A; Le TL; Kaufmann H; Biber A; Kühr A; Linde M; Debener T
    Front Plant Sci; 2011; 2():35. PubMed ID: 22639591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The TNL gene Rdr1 confers broad-spectrum resistance to Diplocarpon rosae.
    Menz I; Straube J; Linde M; Debener T
    Mol Plant Pathol; 2018 May; 19(5):1104-1113. PubMed ID: 28779550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the Rdr1 TNL-cluster in roses and other Rosaceous species.
    Terefe-Ayana D; Kaufmann H; Linde M; Debener T
    BMC Genomics; 2012 Aug; 13():409. PubMed ID: 22905676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rdr3, a novel locus conferring black spot disease resistance in tetraploid rose: genetic analysis, LRR profiling, and SCAR marker development.
    Whitaker VM; Bradeen JM; Debener T; Biber A; Hokanson SC
    Theor Appl Genet; 2010 Feb; 120(3):573-85. PubMed ID: 19847388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Identification and Expression Analysis of the TIR-NBS-LRR Gene Family and Its Response to Fungal Disease in Rose (
    Song J; Chen F; Lv B; Guo C; Yang J; Huang L; Guo J; Xiang F
    Biology (Basel); 2023 Mar; 12(3):. PubMed ID: 36979118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the black spot resistance locus Rdr3 in the shrub rose 'George Vancouver' allows for the development of improved diagnostic markers for DNA-informed breeding.
    Zurn JD; Zlesak DC; Holen M; Bradeen JM; Hokanson SC; Bassil NV
    Theor Appl Genet; 2020 Jun; 133(6):2011-2020. PubMed ID: 32166372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Rdr1 gene family in different Rosaceae genomes reveals an origin of an R-gene cluster after the split of Rubeae within the Rosoideae subfamily.
    Menz I; Lakhwani D; Clotault J; Linde M; Foucher F; Debener T
    PLoS One; 2020; 15(1):e0227428. PubMed ID: 31971947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping a Novel Black Spot Resistance Locus in the Climbing Rose Brite Eyes™ ('RADbrite').
    Zurn JD; Zlesak DC; Holen M; Bradeen JM; Hokanson SC; Bassil NV
    Front Plant Sci; 2018; 9():1730. PubMed ID: 30534133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TNL genes in peach: insights into the post-LRR domain.
    Van Ghelder C; Esmenjaud D
    BMC Genomics; 2016 Apr; 17():317. PubMed ID: 27129402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a BAC library of Rosa rugosaThunb. and assembly of a contig spanning Rdr1, a gene that confers resistance to blackspot.
    Kaufmann H; Mattiesch L; Lörz H; Debener T
    Mol Genet Genomics; 2003 Feb; 268(5):666-74. PubMed ID: 12589441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular markers from a BAC contig spanning the Rdr1 locus: a tool for marker-assisted selection in roses.
    Biber A; Kaufmann H; Linde M; Spiller M; Terefe D; Debener T
    Theor Appl Genet; 2010 Feb; 120(4):765-73. PubMed ID: 19911159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic and biochemical evidence of differentially virulent field isolates of Diplocarpon rosae causing black spot disease of roses.
    Gachomo EW; Kotchoni SO
    Plant Physiol Biochem; 2010; 48(2-3):167-75. PubMed ID: 20137960
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Van Ghelder C; Esmenjaud D; Callot C; Dubois E; Mazier M; Duval H
    Front Plant Sci; 2018; 9():1269. PubMed ID: 30254651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the Diplocarpon rosae secretome reveals candidate genes for effectors and virulence factors.
    Neu E; Debener T
    Fungal Biol; 2019 Mar; 123(3):231-239. PubMed ID: 30798878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes.
    Meyers BC; Morgante M; Michelmore RW
    Plant J; 2002 Oct; 32(1):77-92. PubMed ID: 12366802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrity of the Post-LRR Domain Is Required for TIR-NB-LRR Function.
    Saucet SB; Esmenjaud D; Van Ghelder C
    Mol Plant Microbe Interact; 2021 Mar; 34(3):286-296. PubMed ID: 33197377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and expression profiling analysis of NBS-LRR genes involved in
    Liu Z; Xie J; Wang H; Zhong X; Li H; Yu J; Kang J
    3 Biotech; 2019 May; 9(5):202. PubMed ID: 31065502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species.
    Zhong Y; Yin H; Sargent DJ; Malnoy M; Cheng ZM
    BMC Genomics; 2015 Feb; 16(1):77. PubMed ID: 25759136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of TIR and non-TIR NBS--LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt).
    Xu Q; Wen X; Deng X
    Theor Appl Genet; 2005 Sep; 111(5):819-30. PubMed ID: 16075209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disease resistance breeding in rose: current status and potential of biotechnological tools.
    Debener T; Byrne DH
    Plant Sci; 2014 Nov; 228():107-17. PubMed ID: 25438791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.