These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22639652)

  • 1. Turnover of Phosphatidic Acid through Distinct Signaling Pathways Affects Multiple Aspects of Pollen Tube Growth in Tobacco.
    Pleskot R; Pejchar P; Bezvoda R; Lichtscheidl IK; Wolters-Arts M; Marc J; Zárský V; Potocký M
    Front Plant Sci; 2012; 3():54. PubMed ID: 22639652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth.
    Potocký M; Eliás M; Profotová B; Novotná Z; Valentová O; Zárský V
    Planta; 2003 May; 217(1):122-30. PubMed ID: 12721856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor.
    Potocký M; Pleskot R; Pejchar P; Vitale N; Kost B; Žárský V
    New Phytol; 2014 Jul; 203(2):483-494. PubMed ID: 24750036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes.
    Scholz P; Pejchar P; Fernkorn M; Škrabálková E; Pleskot R; Blersch K; Munnik T; Potocký M; Ischebeck T
    New Phytol; 2022 Mar; 233(5):2185-2202. PubMed ID: 34931304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of phospholipase Dδ family in tobacco pollen tubes.
    Pejchar P; Sekereš J; Novotný O; Žárský V; Potocký M
    Plant J; 2020 Jul; 103(1):212-226. PubMed ID: 32064689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual regulation of plant phospholipase D and the actin cytoskeleton.
    Pleskot R; Potocký M; Pejchar P; Linek J; Bezvoda R; Martinec J; Valentová O; Novotná Z; Zárský V
    Plant J; 2010 May; 62(3):494-507. PubMed ID: 20149133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing Pollen Tube Proteins for In Vivo Binding to Phosphatidic Acid by n-Butanol Treatment and Confocal Microscopy.
    Fritz C; Kost B
    Methods Mol Biol; 2020; 2160():307-325. PubMed ID: 32529446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for diacylglycerol kinase 4 in signalling crosstalk during Arabidopsis pollen tube growth.
    Vaz Dias F; Serrazina S; Vitorino M; Marchese D; Heilmann I; Godinho M; Rodrigues M; Malhó R
    New Phytol; 2019 May; 222(3):1434-1446. PubMed ID: 30628082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidate degradation: phosphatidate phosphatases (lipins) and lipid phosphate phosphatases.
    Brindley DN; Pilquil C; Sariahmetoglu M; Reue K
    Biochim Biophys Acta; 2009 Sep; 1791(9):956-61. PubMed ID: 19250975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diacylglycerol Kinases Are Widespread in Higher Plants and Display Inducible Gene Expression in Response to Beneficial Elements, Metal, and Metalloid Ions.
    Escobar-Sepúlveda HF; Trejo-Téllez LI; Pérez-Rodríguez P; Hidalgo-Contreras JV; Gómez-Merino FC
    Front Plant Sci; 2017; 8():129. PubMed ID: 28223993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shedding light on lipid metabolism in Kinetoplastida: A phylogenetic analysis of phospholipase D protein homologs.
    Plonski NM; Bissoni B; Arachchilage MH; Romstedt K; Kooijman EE; Piontkivska H
    Gene; 2018 May; 656():95-105. PubMed ID: 29501621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Where do substrates of diacylglycerol kinases come from? Diacylglycerol kinases utilize diacylglycerol species supplied from phosphatidylinositol turnover-independent pathways.
    Sakane F; Mizuno S; Takahashi D; Sakai H
    Adv Biol Regul; 2018 Jan; 67():101-108. PubMed ID: 28918129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth.
    Serrano N; Pejchar P; Soukupová H; Hubálek M; Potocký M
    Front Plant Sci; 2022; 13():1028311. PubMed ID: 36426152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant phospholipase D: novel structure, regulatory mechanism, and multifaceted functions with biotechnological application.
    Deepika D; Singh A
    Crit Rev Biotechnol; 2022 Feb; 42(1):106-124. PubMed ID: 34167393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion.
    Monteiro D; Liu Q; Lisboa S; Scherer GE; Quader H; Malhó R
    J Exp Bot; 2005 Jun; 56(416):1665-74. PubMed ID: 15837704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins.
    Röckel N; Wolf S; Kost B; Rausch T; Greiner S
    Plant J; 2008 Jan; 53(1):133-43. PubMed ID: 17971035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth.
    Chen CY; Cheung AY; Wu HM
    Plant Cell; 2003 Jan; 15(1):237-49. PubMed ID: 12509534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insights for Drugs Developed for Phospholipase D Enzymes.
    Stieglitz KA
    Curr Drug Discov Technol; 2018; 15(2):81-93. PubMed ID: 28814238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity.
    Baldanzi G; Bettio V; Malacarne V; Graziani A
    Front Cell Dev Biol; 2016; 4():140. PubMed ID: 27965956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing phosphatidic acid pools from de novo synthesis, PLD, and DGK.
    Arisz SA; Munnik T
    Methods Mol Biol; 2013; 1009():55-62. PubMed ID: 23681523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.