These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 226403)

  • 1. Pituitary hormones influence polyphosphoinositide metabolism in rat brain.
    Jolles J; Wirtz KW; Schotman P; Gispen WH
    FEBS Lett; 1979 Sep; 105(1):110-4. PubMed ID: 226403
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of corticotropin on the rate of 32P-orthophosphate incorporation into the synaptosome phosphoinositides of the ischemic rat brain].
    Pavlinova LI; Tiul'kova EI; Gasteva SV
    Biull Eksp Biol Med; 1987 Jan; 103(1):45-7. PubMed ID: 3026517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The coupling of phosphoinositide metabolism sensitive to ACTH with the adenylate cyclase system in the synaptosomes].
    Pavlinova LI
    Fiziol Zh SSSR Im I M Sechenova; 1992 Nov; 78(11):125-30. PubMed ID: 1284598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticotropin-(1--24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain.
    Jolles J; Zwiers H; Dekker A; Wirtz KW; Gispen WH
    Biochem J; 1981 Jan; 194(1):283-91. PubMed ID: 6272727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of vasopressin on the regional uptake of [3H] orotic acid by rat brain.
    Landgraf R; Hess J; Ermisch A
    Acta Biol Med Ger; 1978; 37(4):655-8. PubMed ID: 735632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of brain polyphosphoinositide metabolism by ACTH-sensitive protein phosphorylation.
    Jolles J; Zwiers H; van Dongen CJ; Schotman P; Wirtz KW; Gispen WH
    Nature; 1980 Aug; 286(5773):623-5. PubMed ID: 6250080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of brain polyphosphoinositide metabolism by ACTH and beta-endorphin: structure-activity studies.
    Jolles J; Bär PR; Gispen WH
    Brain Res; 1981 Nov; 224(2):315-26. PubMed ID: 6269709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptides and the conversion of [3H]tyrosine to catecholamines: effects of ACTH-analogs, melanocyte-stimulating hormones and lysine-vasopressin.
    Iuvone PM; Morasco J; Delanoy RL; Dunn AJ
    Brain Res; 1978 Jan; 139(1):131-9. PubMed ID: 202372
    [No Abstract]   [Full Text] [Related]  

  • 9. Pituitary peptides and adaptive autonomic responses.
    Bohus B
    Prog Brain Res; 1975; 42():275-83. PubMed ID: 172965
    [No Abstract]   [Full Text] [Related]  

  • 10. Changes in brain polyphosphoinositide metabolism induced by cationic amphiphilic drugs in vitro.
    Pappu AS; Hauser G
    Biochem Pharmacol; 1981 Dec; 30(23):3243-6. PubMed ID: 6274357
    [No Abstract]   [Full Text] [Related]  

  • 11. Behavioral and biochemical responses of mice to the intraventricular administration of ACTH analogs and lysine vasopressin.
    Rees HD; Dunn AJ; Iuvone PM
    Life Sci; 1976 Jun; 18(11):1333-9. PubMed ID: 180372
    [No Abstract]   [Full Text] [Related]  

  • 12. [Effect of intercellular regulators of different classes on the enzymatic reduction of disulfides (phenomenon and possible mechanism)].
    Kulinskiĭ VI; Ivanov VV
    Dokl Akad Nauk SSSR; 1976 JUL-AUG; 229(1):220-2. PubMed ID: 182444
    [No Abstract]   [Full Text] [Related]  

  • 13. Influence of posterior pituitary hormones on the pituitary-adrenocortical response to neurogenic stress in the Brattleboro rat.
    Lutz-Bucher B; Koch B
    Ann N Y Acad Sci; 1982; 394():634-8. PubMed ID: 6295238
    [No Abstract]   [Full Text] [Related]  

  • 14. Transmembrane signal transduction and ACTH-induced excessive grooming in the rat.
    Gispen WH
    Ann N Y Acad Sci; 1988; 525():141-9. PubMed ID: 2839063
    [No Abstract]   [Full Text] [Related]  

  • 15. Cholinergic stimulation of polyphosphoinositide metabolism in brain in vivo.
    Soukup JF; Friedel RO; Schanberg SM
    Biochem Pharmacol; 1978; 27(8):1239-43. PubMed ID: 212082
    [No Abstract]   [Full Text] [Related]  

  • 16. Time-dependent anti-amnesic effect of ACTH4-10 and desglycinamide-lysine vasopressin.
    Rigter H; Elbertse R; van Riezen H
    Prog Brain Res; 1975; 42():163-71. PubMed ID: 172961
    [No Abstract]   [Full Text] [Related]  

  • 17. Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin.
    Deshmukh DS; Bear WD; Brockerhoff H
    J Neurochem; 1978 May; 30(5):1191-3. PubMed ID: 207823
    [No Abstract]   [Full Text] [Related]  

  • 18. [Effect of certain inhibitors on polyphosphoinositide metabolism in brain homogenates].
    Dvorkin VIa; Kiselev GV
    Biokhimiia; 1973; 38(5):976-9. PubMed ID: 4360793
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of cyclic AMP-dependent hormones and Ca2+-mobilizing hormones on the Ca2+ influx and polyphosphoinositide metabolism in isolated rat hepatocytes.
    Poggioli J; Mauger JP; Claret M
    Biochem J; 1986 May; 235(3):663-9. PubMed ID: 3019304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phosphatidate-polyphosphoinositide cycle: activation by parathyroid hormone and dibutyryl-cAMP in rabbit kidney cortex.
    Farese RV; Bidot-López P; Sabir MA; Larson RE
    Ann N Y Acad Sci; 1981; 372():539-51. PubMed ID: 6280554
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.