These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22640374)

  • 1. Tempest: GPU-CPU computing for high-throughput database spectral matching.
    Milloy JA; Faherty BK; Gerber SA
    J Proteome Res; 2012 Jul; 11(7):3581-91. PubMed ID: 22640374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms.
    Adamo ME; Gerber SA
    Curr Protoc Bioinformatics; 2016 Sep; 55():13.29.1-13.29.23. PubMed ID: 27603022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity.
    Xu T; Park SK; Venable JD; Wohlschlegel JA; Diedrich JK; Cociorva D; Lu B; Liao L; Hewel J; Han X; Wong CCL; Fonslow B; Delahunty C; Gao Y; Shah H; Yates JR
    J Proteomics; 2015 Nov; 129():16-24. PubMed ID: 26171723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral library generating function for assessing spectrum-spectrum match significance.
    Wang M; Bandeira N
    J Proteome Res; 2013 Sep; 12(9):3944-51. PubMed ID: 23808827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating the scoring module of mass spectrometry-based peptide identification using GPUs.
    Li Y; Chi H; Xia L; Chu X
    BMC Bioinformatics; 2014 Apr; 15():121. PubMed ID: 24773593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faster SEQUEST searching for peptide identification from tandem mass spectra.
    Diament BJ; Noble WS
    J Proteome Res; 2011 Sep; 10(9):3871-9. PubMed ID: 21761931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of filtering criterion for SEQUEST database searching to improve proteome coverage in shotgun proteomics.
    Jiang X; Jiang X; Han G; Ye M; Zou H
    BMC Bioinformatics; 2007 Aug; 8():323. PubMed ID: 17761002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pepitome: evaluating improved spectral library search for identification complementarity and quality assessment.
    Dasari S; Chambers MC; Martinez MA; Carpenter KL; Ham AJ; Vega-Montoto LJ; Tabb DL
    J Proteome Res; 2012 Mar; 11(3):1686-95. PubMed ID: 22217208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MacroSEQUEST: efficient candidate-centric searching and high-resolution correlation analysis for large-scale proteomics data sets.
    Faherty BK; Gerber SA
    Anal Chem; 2010 Aug; 82(16):6821-9. PubMed ID: 20684545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The spectral networks paradigm in high throughput mass spectrometry.
    Guthals A; Watrous JD; Dorrestein PC; Bandeira N
    Mol Biosyst; 2012 Oct; 8(10):2535-44. PubMed ID: 22610447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating open modification spectral library searching on tensor core in high-dimensional space.
    Kang J; Xu W; Bittremieux W; Moshiri N; Rosing T
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37369033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.
    Baumgardner LA; Shanmugam AK; Lam H; Eng JK; Martin DB
    J Proteome Res; 2011 Jun; 10(6):2882-8. PubMed ID: 21545112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods to Calculate Spectrum Similarity.
    Yilmaz Ş; Vandermarliere E; Martens L
    Methods Mol Biol; 2017; 1549():75-100. PubMed ID: 27975285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification?
    Muth T; Renard BY
    Brief Bioinform; 2018 Sep; 19(5):954-970. PubMed ID: 28369237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrum-to-spectrum searching using a proteome-wide spectral library.
    Yen CY; Houel S; Ahn NG; Old WM
    Mol Cell Proteomics; 2011 Jul; 10(7):M111.007666. PubMed ID: 21532008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A suffix tree approach to the interpretation of tandem mass spectra: applications to peptides of non-specific digestion and post-translational modifications.
    Lu B; Chen T
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii113-21. PubMed ID: 14534180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact p-value calculation for XCorr scoring of high-resolution MS/MS data.
    Bhimani K; Peresadina A; Vozniuk D; Kertész-Farkas A
    Proteomics; 2024 Mar; 24(5):e2300145. PubMed ID: 37726251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ProteinInferencer: Confident protein identification and multiple experiment comparison for large scale proteomics projects.
    Zhang Y; Xu T; Shan B; Hart J; Aslanian A; Han X; Zong N; Li H; Choi H; Wang D; Acharya L; Du L; Vogt PK; Ping P; Yates JR
    J Proteomics; 2015 Nov; 129():25-32. PubMed ID: 26196237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved validation of peptide MS/MS assignments using spectral intensity prediction.
    Sun S; Meyer-Arendt K; Eichelberger B; Brown R; Yen CY; Old WM; Pierce K; Cios KJ; Ahn NG; Resing KA
    Mol Cell Proteomics; 2007 Jan; 6(1):1-17. PubMed ID: 17018520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.