BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22640740)

  • 1. Mechanistic insights into human pre-mRNA splicing of human ultra-short introns: potential unusual mechanism identifies G-rich introns.
    Sasaki-Haraguchi N; Shimada MK; Taniguchi I; Ohno M; Mayeda A
    Biochem Biophys Res Commun; 2012 Jun; 423(2):289-94. PubMed ID: 22640740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns.
    Fukumura K; Yoshimoto R; Sperotto L; Kang HS; Hirose T; Inoue K; Sattler M; Mayeda A
    Nat Commun; 2021 Aug; 12(1):4910. PubMed ID: 34389706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The splicing factor Prp17 interacts with the U2, U5 and U6 snRNPs and associates with the spliceosome pre- and post-catalysis.
    Sapra AK; Khandelia P; Vijayraghavan U
    Biochem J; 2008 Dec; 416(3):365-74. PubMed ID: 18691155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A short 5' splice site RNA oligo can participate in both steps of splicing in mammalian extracts.
    Konforti BB; Konarska MM
    RNA; 1995 Oct; 1(8):815-27. PubMed ID: 7493327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purine-rich enhancers function in the AT-AC pre-mRNA splicing pathway and do so independently of intact U1 snRNP.
    Wu Q; Krainer AR
    RNA; 1998 Dec; 4(12):1664-73. PubMed ID: 9848661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 62,000 molecular weight spliceosome protein crosslinks to the intron polypyrimidine tract.
    Wang J; Pederson T
    Nucleic Acids Res; 1990 Oct; 18(20):5995-6001. PubMed ID: 2172924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splicing of a divergent subclass of AT-AC introns requires the major spliceosomal snRNAs.
    Wu Q; Krainer AR
    RNA; 1997 Jun; 3(6):586-601. PubMed ID: 9174094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms and Regulation of Alternative Pre-mRNA Splicing.
    Lee Y; Rio DC
    Annu Rev Biochem; 2015; 84():291-323. PubMed ID: 25784052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of U1 function in Schizosaccharomyces pombe: pre-mRNAs differ in the extent and nature of their requirements for this snRNA in vivo.
    Alvarez CJ; Romfo CM; Vanhoy RW; Porter GL; Wise JA
    RNA; 1996 May; 2(5):404-18. PubMed ID: 8665408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influenza virus NS1 protein binds to a specific region in human U6 snRNA and inhibits U6-U2 and U6-U4 snRNA interactions during splicing.
    Qiu Y; Nemeroff M; Krug RM
    RNA; 1995 May; 1(3):304-16. PubMed ID: 7489502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing-independent recruitment of spliceosomal small nuclear RNPs to nascent RNA polymerase II transcripts.
    Patel SB; Novikova N; Bellini M
    J Cell Biol; 2007 Sep; 178(6):937-49. PubMed ID: 17846169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spliceosome.
    Lamond AI
    Bioessays; 1993 Sep; 15(9):595-603. PubMed ID: 8240312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SF3b155 N-terminal domain is a scaffold important for splicing.
    Cass DM; Berglund JA
    Biochemistry; 2006 Aug; 45(33):10092-101. PubMed ID: 16906767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caspase-2 pre-mRNA alternative splicing: Identification of an intronic element containing a decoy 3' acceptor site.
    Coté J; Dupuis S; Jiang Z; Wu JY
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):938-43. PubMed ID: 11158574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel yeast U2 snRNP protein, Snu17p, is required for the first catalytic step of splicing and for progression of spliceosome assembly.
    Gottschalk A; Bartels C; Neubauer G; Lührmann R; Fabrizio P
    Mol Cell Biol; 2001 May; 21(9):3037-46. PubMed ID: 11287609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
    Day IS; Golovkin M; Palusa SG; Link A; Ali GS; Thomas J; Richardson DN; Reddy AS
    Plant J; 2012 Sep; 71(6):936-47. PubMed ID: 22563826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron.
    Parker R; Siliciano PG
    Nature; 1993 Feb; 361(6413):660-2. PubMed ID: 8437627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic evidence for base pairing between U2 and U6 snRNA in mammalian mRNA splicing.
    Datta B; Weiner AM
    Nature; 1991 Aug; 352(6338):821-4. PubMed ID: 1831879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Genetic Screen for Pre-mRNA Splicing Mutants of
    Kanno T; Lin WD; Fu JL; Chang CL; Matzke AJM; Matzke M
    Genetics; 2017 Dec; 207(4):1347-1359. PubMed ID: 28971960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberrant splicing of tau pre-mRNA caused by intronic mutations associated with the inherited dementia frontotemporal dementia with parkinsonism linked to chromosome 17.
    Jiang Z; Cote J; Kwon JM; Goate AM; Wu JY
    Mol Cell Biol; 2000 Jun; 20(11):4036-48. PubMed ID: 10805746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.