BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 22640821)

  • 1. Rejection of pharmaceuticals by forward osmosis membranes.
    Jin X; Shan J; Wang C; Wei J; Tang CY
    J Hazard Mater; 2012 Aug; 227-228():55-61. PubMed ID: 22640821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes.
    Lin YL; Chiou JH; Lee CH
    J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of feeding strategies on pharmaceutical removal by subsurface flow constructed wetlands.
    Zhang DQ; Gersberg RM; Hua T; Zhu J; Nguyen AT; Law WK; Ng WJ; Tan SK
    J Environ Qual; 2012; 41(5):1674-80. PubMed ID: 23099959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment.
    Radjenović J; Petrović M; Ventura F; Barceló D
    Water Res; 2008 Aug; 42(14):3601-10. PubMed ID: 18656225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of selected pharmaceuticals by chlorination, coagulation-sedimentation and powdered activated carbon treatment.
    Simazaki D; Fujiwara J; Manabe S; Matsuda M; Asami M; Kunikane S
    Water Sci Technol; 2008; 58(5):1129-35. PubMed ID: 18824814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions.
    Maoz A; Chefetz B
    Water Res; 2010 Feb; 44(3):981-9. PubMed ID: 19897223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rejection of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) by low pressure reverse osmosis membranes.
    Ozaki H; Ikejima N; Shimizu Y; Fukami K; Taniguchi S; Takanami R; Giri RR; Matsui S
    Water Sci Technol; 2008; 58(1):73-81. PubMed ID: 18653939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up.
    D'Haese A; Le-Clech P; Van Nevel S; Verbeken K; Cornelissen ER; Khan SJ; Verliefde AR
    Water Res; 2013 Sep; 47(14):5232-44. PubMed ID: 23866149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.
    Landry KA; Sun P; Huang CH; Boyer TH
    Water Res; 2015 Jan; 68():510-21. PubMed ID: 25462757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rejection of micropollutants by clean and fouled forward osmosis membrane.
    Valladares Linares R; Yangali-Quintanilla V; Li Z; Amy G
    Water Res; 2011 Dec; 45(20):6737-44. PubMed ID: 22055122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules.
    Gu Y; Wang YN; Wei J; Tang CY
    Water Res; 2013 Apr; 47(5):1867-74. PubMed ID: 23384517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2014 Feb; 49():265-74. PubMed ID: 24345822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources.
    Vergili I
    J Environ Manage; 2013 Sep; 127():177-87. PubMed ID: 23708199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes.
    Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G
    Water Res; 2009 May; 43(9):2349-62. PubMed ID: 19303127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO).
    Cui Y; Liu XY; Chung TS; Weber M; Staudt C; Maletzko C
    Water Res; 2016 Mar; 91():104-14. PubMed ID: 26773492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.
    Wang X; Zhao Y; Yuan B; Wang Z; Li X; Ren Y
    Bioresour Technol; 2016 Feb; 202():50-8. PubMed ID: 26700758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-regenerable multi-walled carbon nanotube membranes for the removal of pharmaceutical micropollutants from water.
    Zaib Q; Mansoor B; Ahmad F
    Environ Sci Process Impacts; 2013 Aug; 15(8):1582-9. PubMed ID: 23811952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behaviour of RO98pHt polyamide membrane in reverse osmosis and low reverse osmosis conditions for phenol removal.
    Hidalgo AM; León G; Gómez M; Murcia MD; Gómez E; Gómez JL
    Environ Technol; 2011 Oct; 32(13-14):1497-502. PubMed ID: 22329140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis.
    Li G; Wang J; Hou D; Bai Y; Liu H
    J Environ Sci (China); 2016 Jul; 45():7-17. PubMed ID: 27372114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.