These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 22640862)

  • 41. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.
    Wu W; Zhang Y; Liu D; Chen Z
    Metab Eng; 2019 Mar; 52():77-86. PubMed ID: 30458240
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers.
    Xu J; Xia X; Zhang J; Guo Y; Qian H; Zhang W
    Plasmid; 2014 Mar; 72():9-17. PubMed ID: 24613758
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum.
    Zhang Y; Shang X; Lai S; Zhang G; Liang Y; Wen T
    Appl Environ Microbiol; 2012 Aug; 78(16):5831-8. PubMed ID: 22685153
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae.
    Kim JS; Holmes RK
    PLoS One; 2012; 7(3):e31709. PubMed ID: 22438866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum.
    Hu J; Tan Y; Li Y; Hu X; Xu D; Wang X
    Plasmid; 2013 Nov; 70(3):303-13. PubMed ID: 23856168
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production.
    Takeno S; Murata R; Kobayashi R; Mitsuhashi S; Ikeda M
    Appl Environ Microbiol; 2010 Nov; 76(21):7154-60. PubMed ID: 20851994
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing
    Ma Y; Chen Q; Cui Y; Du L; Shi T; Xu Q; Ma Q; Xie X; Chen N
    J Microbiol Biotechnol; 2018 Nov; 28(11):1916-1927. PubMed ID: 30562884
    [No Abstract]   [Full Text] [Related]  

  • 48. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
    Mimitsuka T; Sawai H; Hatsu M; Yamada K
    Biosci Biotechnol Biochem; 2007 Sep; 71(9):2130-5. PubMed ID: 17895539
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pyruvate Carboxylase Variants Enabling Improved Lysine Production from Glucose Identified by Biosensor-Based High-Throughput Fluorescence-Activated Cell Sorting Screening.
    Kortmann M; Mack C; Baumgart M; Bott M
    ACS Synth Biol; 2019 Feb; 8(2):274-281. PubMed ID: 30707564
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a genetically engineered Escherichia coli strain for plasmid transformation in Corynebacterium glutamicum.
    Li H; Zhang L; Guo W; Xu D
    J Microbiol Methods; 2016 Dec; 131():156-160. PubMed ID: 27793586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mutation-induced metabolite pool alterations in Corynebacterium glutamicum: towards the identification of nitrogen control signals.
    Müller T; Strösser J; Buchinger S; Nolden L; Wirtz A; Krämer R; Burkovski A
    J Biotechnol; 2006 Dec; 126(4):440-53. PubMed ID: 16822574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New Intracellular Shikimic Acid Biosensor for Monitoring Shikimate Synthesis in Corynebacterium glutamicum.
    Liu C; Zhang B; Liu YM; Yang KQ; Liu SJ
    ACS Synth Biol; 2018 Feb; 7(2):591-601. PubMed ID: 29087704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An enzymatic colorimetric whole-cell biosensor for high-throughput identification of lysine overproducers.
    Liu J; Xu JZ; Rao ZM; Zhang WG
    Biosens Bioelectron; 2022 Nov; 216():114681. PubMed ID: 36087402
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
    Eggeling L; Bott M
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3387-94. PubMed ID: 25761623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elucidation of genes relevant to the microaerobic growth of Corynebacterium glutamicum.
    Ikeda M; Baba M; Tsukamoto N; Komatsu T; Mitsuhashi S; Takeno S
    Biosci Biotechnol Biochem; 2009 Dec; 73(12):2806-8. PubMed ID: 19966452
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lysine Fermentation: History and Genome Breeding.
    Ikeda M
    Adv Biochem Eng Biotechnol; 2017; 159():73-102. PubMed ID: 27832296
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method.
    Wang Y; Li Q; Zheng P; Guo Y; Wang L; Zhang T; Sun J; Ma Y
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1227-35. PubMed ID: 27369765
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes.
    Sindelar G; Wendisch VF
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):677-89. PubMed ID: 17364200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis.
    Liu DX; Fan CS; Tao JH; Liang GX; Gao SE; Wang HJ; Li X; Song DX
    World J Gastroenterol; 2004 Dec; 10(24):3683-7. PubMed ID: 15534933
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Molecular cloning and the expression of the genes of amino acid biosynthesis of Corynebacterium glutamicum in Escherichia coli cells].
    Beskrovnaia OIu; Fonshteĭn MIu; Kolibaba LG; Iankovskiĭ NK; Debabov VG
    Genetika; 1988 Jul; 24(7):1153-8. PubMed ID: 3141247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.