BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22641465)

  • 1. An ear-worn sensor for the detection of gait impairment after abdominal surgery.
    Atallah L; Aziz O; Gray E; Lo B; Yang GZ
    Surg Innov; 2013 Feb; 20(1):86-94. PubMed ID: 22641465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walking pattern classification and walking distance estimation algorithms using gait phase information.
    Wang JS; Lin CW; Yang YT; Ho YJ
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2884-92. PubMed ID: 22893370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B; Rochat S; Büla CJ; Aminian K
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy expenditure prediction using a miniaturized ear-worn sensor.
    Atallah L; Leong JJ; Lo B; Yang GZ
    Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of gait patterns in the time-frequency domain.
    Nyan MN; Tay FE; Seah KH; Sitoh YY
    J Biomech; 2006; 39(14):2647-56. PubMed ID: 16212968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambulatory system for the quantitative and qualitative analysis of gait and posture in chronic pain patients treated with spinal cord stimulation.
    Paraschiv-Ionescu A; Buchser EE; Rutschmann B; Najafi B; Aminian K
    Gait Posture; 2004 Oct; 20(2):113-25. PubMed ID: 15336280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pervasive body sensor network for measuring postoperative recovery at home.
    Aziz O; Atallah L; Lo B; Elhelw M; Wang L; Yang GZ; Darzi A
    Surg Innov; 2007 Jun; 14(2):83-90. PubMed ID: 17558012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer.
    Weiss A; Sharifi S; Plotnik M; van Vugt JP; Giladi N; Hausdorff JM
    Neurorehabil Neural Repair; 2011; 25(9):810-8. PubMed ID: 21989633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data.
    McCamley J; Donati M; Grimpampi E; Mazzà C
    Gait Posture; 2012 Jun; 36(2):316-8. PubMed ID: 22465705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis.
    Den Otter AR; Geurts AC; Mulder T; Duysens J
    Clin Neurophysiol; 2006 Jan; 117(1):4-15. PubMed ID: 16337186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ear-worn body sensor network device: an objective tool for functional postoperative home recovery monitoring.
    Aziz O; Atallah L; Lo B; Gray E; Athanasiou T; Darzi A; Yang GZ
    J Am Med Inform Assoc; 2011; 18(2):156-9. PubMed ID: 21252051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait Analysis From a Single Ear-Worn Sensor: Reliability and Clinical Evaluation for Orthopaedic Patients.
    Jarchi D; Lo B; Wong C; Ieong E; Nathwani D; Yang GZ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):882-92. PubMed ID: 26357402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope.
    Mannini A; Sabatini AM
    Gait Posture; 2012 Sep; 36(4):657-61. PubMed ID: 22796244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational intelligent gait-phase detection system to identify pathological gait.
    Senanayake CM; Senanayake SM
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1173-9. PubMed ID: 20801745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of repeatability of a wireless, inertial sensor-based lameness evaluation system for horses.
    Keegan KG; Kramer J; Yonezawa Y; Maki H; Pai PF; Dent EV; Kellerman TE; Wilson DA; Reed SK
    Am J Vet Res; 2011 Sep; 72(9):1156-63. PubMed ID: 21879972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.