These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22641465)

  • 41. Comparison of a body-mounted inertial sensor system-based method with subjective evaluation for detection of lameness in horses.
    Keegan KG; Wilson DA; Kramer J; Reed SK; Yonezawa Y; Maki H; Pai PF; Lopes MA
    Am J Vet Res; 2013 Jan; 74(1):17-24. PubMed ID: 23270341
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A method for extracting temporal parameters based on hidden Markov models in body sensor networks with inertial sensors.
    Guenterberg E; Yang AY; Ghasemzadeh H; Jafari R; Bajcsy R; Sastry SS
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1019-30. PubMed ID: 19726268
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Classifying step and spin turns using wireless gyroscopes and implications for fall risk assessments.
    Fino PC; Frames CW; Lockhart TE
    Sensors (Basel); 2015 May; 15(5):10676-85. PubMed ID: 25954950
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gait variability measurements in lumbar spinal stenosis patients: part B. Preoperative versus postoperative gait variability.
    Papadakis NC; Christakis DG; Tzagarakis GN; Chlouverakis GI; Kampanis NA; Stergiopoulos KN; Katonis PG
    Physiol Meas; 2009 Nov; 30(11):1187-95. PubMed ID: 19794235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time gait event detection for paraplegic FES walking.
    Skelly MM; Chizeck HJ
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):59-68. PubMed ID: 11482364
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robotic coloanal anastomosis with or without intersphincteric resection for low rectal cancer: starting with the perianal approach followed by robotic procedure.
    Kang J; Hur H; Min BS; Lee KY; Kim NK
    Ann Surg Oncol; 2012 Jan; 19(1):154-5. PubMed ID: 21822556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence.
    Jarchi D; Wong C; Kwasnicki RM; Heller B; Tew GA; Yang GZ
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1261-73. PubMed ID: 24658250
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Objective home-based gait assessment in spinocerebellar ataxia.
    Subramony SH; Kedar S; Murray E; Protas E; Xu H; Ashizawa T; Tan A
    J Neurol Sci; 2012 Feb; 313(1-2):95-8. PubMed ID: 22018764
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gait asymmetry detection in older adults using a light ear-worn sensor.
    Atallah L; Wiik A; Lo B; Cobb JP; Amis AA; Yang GZ
    Physiol Meas; 2014 May; 35(5):N29-40. PubMed ID: 24711048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel gait parameter estimation method for healthy adults and postoperative patients with an ear-worn sensor.
    Diao Y; Ma Y; Xu D; Chen W; Wang Y
    Physiol Meas; 2020 Jun; 41(5):05NT01. PubMed ID: 32268319
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A body-fixed-sensor based analysis of compensatory trunk movements during unconstrained walking.
    Zijlstra A; Goosen JH; Verheyen CC; Zijlstra W
    Gait Posture; 2008 Jan; 27(1):164-7. PubMed ID: 17433685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gait posture estimation using wearable acceleration and gyro sensors.
    Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S
    J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles.
    González I; Fontecha J; Hervás R; Bravo J
    Sensors (Basel); 2015 Jul; 15(7):16589-613. PubMed ID: 26184199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [A robotic system for gait re-education in patients with an incomplete spinal cord injury].
    Esclarín-De Ruz A; Alcobendas-Maestro M; Casado-López R; Muñoz-Gonzalez A; Florido-Sánchez MA; González-Valdizán E
    Rev Neurol; 2009 Dec 16-31; 49(12):617-22. PubMed ID: 20013712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gait event detection during stair walking using a rate gyroscope.
    Formento PC; Acevedo R; Ghoussayni S; Ewins D
    Sensors (Basel); 2014 Mar; 14(3):5470-85. PubMed ID: 24651724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stumble detection and classification for an intelligent transfemoral prosthesis.
    Lawson BE; Atakan Varol H; Sup F; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():511-4. PubMed ID: 21095656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An adaptive gyroscope-based algorithm for temporal gait analysis.
    Greene BR; McGrath D; O'Neill R; O'Donovan KJ; Burns A; Caulfield B
    Med Biol Eng Comput; 2010 Dec; 48(12):1251-60. PubMed ID: 21042951
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Developing a portable gait cycle detection system using an inertial sensor and evaluating the accuracy of the gait cycle detection.
    Park MH; Kwak KY; Kim DW
    Technol Health Care; 2015; 24 Suppl 1():S69-76. PubMed ID: 26409541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.