These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22641465)

  • 61. Highly accurate recognition of human postures and activities through classification with rejection.
    Tang W; Sazonov ES
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):309-15. PubMed ID: 24403429
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.
    Wang F; Skubic M; Rantz M; Cuddihy PE
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2434-43. PubMed ID: 24771566
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Instrumenting gait with an accelerometer: a system and algorithm examination.
    Godfrey A; Del Din S; Barry G; Mathers JC; Rochester L
    Med Eng Phys; 2015 Apr; 37(4):400-7. PubMed ID: 25749552
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Unobtrusive assessment of walking speed in the home using inexpensive PIR sensors.
    Hayes TL; Hagler S; Austin D; Kaye J; Pavel M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7248-51. PubMed ID: 19965096
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Automated Analysis and Quantification of Human Mobility Using a Depth Sensor.
    Leightley D; McPhee JS; Yap MH
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):939-948. PubMed ID: 27254874
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Online learning of gait models for calculation of gait parameters.
    Waugh JL; Trinh A; Mohammed RR; McIlroy WE; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6146-6149. PubMed ID: 28269655
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Monitoring of paces and gaits using binary PIR Sensors with rehabilitation treadmill.
    Jiang Lu ; Ting Zhang ; Qingquan Sun ; Kadiwal S; Unwala I; Fei Hu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5315-5318. PubMed ID: 28269460
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Measuring in-home walking speed using wall-mounted RF transceiver arrays.
    Jacobs PG; Wan EA; Schafermeyer E; Adenwala F; Paul AS; Preiser N; Kayez J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():914-7. PubMed ID: 25570108
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A novel sensor-assisted RFID-based indoor tracking system for the elderly living alone.
    Hsu CC; Chen JH
    Sensors (Basel); 2011; 11(11):10094-113. PubMed ID: 22346631
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Energy efficient simulator for patient monitoring in Body Sensor Networks.
    Sene IG; da Rocha AF; de A Barbosa TM; de O Nascimento FA; Carvalho HS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1537-40. PubMed ID: 19162965
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Unobtrusive and ubiquitous in-home monitoring: a methodology for continuous assessment of gait velocity in elders.
    Hagler S; Austin D; Hayes TL; Kaye J; Pavel M
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):813-20. PubMed ID: 19932989
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.
    Huang J; Yu X; Wang Y; Xiao X
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27809230
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Linguistic summarization of in-home sensor data.
    Jain A; Popescu M; Keller J; Rantz M; Markway B
    J Biomed Inform; 2019 Aug; 96():103240. PubMed ID: 31260752
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Smart watch RSSI localization and refinement for behavioral classification using laser-SLAM for mapping and fingerprinting.
    Carlson JD; Mittek M; Parkison SA; Sathler P; Bayne D; Psota ET; Perez LC; Bonasera SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2173-6. PubMed ID: 25570416
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Unobtrusive, Continuous LIDAR-Based Measurement of Gait Characteristics at Home.
    Pavel M; Caves K; Jarvis L; Hasson CJ; Kos M; Jimison H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2339-2342. PubMed ID: 34891752
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantifying postoperative recovery using wearable activity monitors following abdominal wall surgery: The AbTech trial.
    Kwasnicki RM; Giannas E; Rizk C; Kungwengwe G; Dutta T; Dunne J; Dex E; Gokani V; Henry FP; Hunter JE; Williams G; Abela C; Warren O; Jones RP; Wood SH
    J Plast Reconstr Aesthet Surg; 2024 Jun; 93():281-289. PubMed ID: 38728901
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Delta Features From Ambient Sensor Data are Good Predictors of Change in Functional Health.
    Robben S; Englebienne G; Krose B
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):986-993. PubMed ID: 27455530
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wireless accelerometer iPod application for quantifying gait characteristics.
    LeMoyne R; Mastroianni T; Grundfest W
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7904-7. PubMed ID: 22256173
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Empirical Mode Decomposition and Hilbert Spectrum for Abnormality Detection in Normal and Abnormal Walking Transitions.
    Erfianto B; Rizal A; Hadiyoso S
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36900889
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Extracting Fundamental Periods to Segment Biomedical Signals.
    Motrenko A; Strijov V
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1466-1476. PubMed ID: 26277011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.