These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22641711)

  • 21. Multiple Optimal Reconciliations Under the Duplication-Loss-Coalescence Model.
    Du H; Ong YS; Knittel M; Mawhorter R; Liu N; Gross G; Tojo R; Libeskind-Hadas R; Wu YC
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2144-2156. PubMed ID: 31199267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the space of gene/species reconciliations with transfers.
    Chan YB; Ranwez V; Scornavacca C
    J Math Biol; 2015 Nov; 71(5):1179-209. PubMed ID: 25502987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconciliation with non-binary species trees.
    Vernot B; Stolzer M; Goldman A; Durand D
    Comput Syst Bioinformatics Conf; 2007; 6():441-52. PubMed ID: 17951846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss.
    Bansal MS; Alm EJ; Kellis M
    Bioinformatics; 2012 Jun; 28(12):i283-91. PubMed ID: 22689773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inferring Pareto-optimal reconciliations across multiple event costs under the duplication-loss-coalescence model.
    Mawhorter R; Liu N; Libeskind-Hadas R; Wu YC
    BMC Bioinformatics; 2019 Dec; 20(Suppl 20):639. PubMed ID: 31842732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Bayesian method for analyzing lateral gene transfer.
    Sjöstrand J; Tofigh A; Daubin V; Arvestad L; Sennblad B; Lagergren J
    Syst Biol; 2014 May; 63(3):409-20. PubMed ID: 24562812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconciling multiple genes trees via segmental duplications and losses.
    Dondi R; Lafond M; Scornavacca C
    Algorithms Mol Biol; 2019; 14():7. PubMed ID: 30930955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Unconstrained Diameters of the Duplication-Loss Cost and the Loss Cost.
    Gorecki P; Eulenstein O; Tiuryn J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2125-2135. PubMed ID: 31150345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying the extent of lateral gene transfer required to Avert a 'genome of Eden'.
    van Iersel L; Semple C; Steel M
    Bull Math Biol; 2010 Oct; 72(7):1783-98. PubMed ID: 20087669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconciliation of a gene network and species tree.
    Chan YB; Robin C
    J Theor Biol; 2019 Jul; 472():54-66. PubMed ID: 30951730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient exact algorithm for computing all pairwise distances between reconciliations in the duplication-transfer-loss model.
    Santichaivekin S; Mawhorter R; Libeskind-Hadas R
    BMC Bioinformatics; 2019 Dec; 20(Suppl 20):636. PubMed ID: 31842734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generalizing the Domain-Gene-Species Reconciliation Framework to Microbial Genes and Domains.
    Mondal A; Bansal MS
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3511-3522. PubMed ID: 37436868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linear-time algorithms for the multiple gene duplication problems.
    Luo CW; Chen MC; Chen YC; Yang RW; Liu HF; Chao KM
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):260-5. PubMed ID: 21071814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Reconstructing genes evolution along a species tree].
    Gorbunov KIu; Liubetskiĭ VA
    Mol Biol (Mosk); 2009; 43(5):946-58. PubMed ID: 19899641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying a species tree subject to random lateral gene transfer.
    Steel M; Linz S; Huson DH; Sanderson MJ
    J Theor Biol; 2013 Apr; 322():81-93. PubMed ID: 23340439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A hybrid micro-macroevolutionary approach to gene tree reconstruction.
    Durand D; Halldórsson BV; Vernot B
    J Comput Biol; 2006 Mar; 13(2):320-35. PubMed ID: 16597243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of Level- k LGT Networks.
    Pons JC; Scornavacca C; Cardona G
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):158-164. PubMed ID: 30703035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Species Tree Inference Using a Mixture Model.
    Ullah I; Parviainen P; Lagergren J
    Mol Biol Evol; 2015 Sep; 32(9):2469-82. PubMed ID: 25963975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resolution and reconciliation of non-binary gene trees with transfers, duplications and losses.
    Jacox E; Weller M; Tannier E; Scornavacca C
    Bioinformatics; 2017 Apr; 33(7):980-987. PubMed ID: 28073758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lateral gene transfer between prokaryotes and eukaryotes.
    Sieber KB; Bromley RE; Dunning Hotopp JC
    Exp Cell Res; 2017 Sep; 358(2):421-426. PubMed ID: 28189637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.