BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 22641712)

  • 1. Noniterative convex optimization methods for network component analysis.
    Jacklin N; Ding Z; Chen W; Chang C
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1472-81. PubMed ID: 22641712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROBNCA: robust network component analysis for recovering transcription factor activities.
    Noor A; Ahmad A; Serpedin E; Nounou M; Nounou H
    Bioinformatics; 2013 Oct; 29(19):2410-8. PubMed ID: 23940252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local network component analysis for quantifying transcription factor activities.
    Shi Q; Zhang C; Guo W; Zeng T; Lu L; Jiang Z; Wang Z; Liu J; Chen L
    Methods; 2017 Jul; 124():25-35. PubMed ID: 28710010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription network analysis by a sparse binary factor analysis algorithm.
    Tu S; Chen R; Xu L
    J Integr Bioinform; 2012 Jul; 9(2):198. PubMed ID: 22820312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data.
    Chang C; Ding Z; Hung YS; Fung PC
    Bioinformatics; 2008 Jun; 24(11):1349-58. PubMed ID: 18400771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SparseNCA: Sparse Network Component Analysis for Recovering Transcription Factor Activities with Incomplete Prior Information.
    Noor A; Ahmad A; Serpedin E
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):387-395. PubMed ID: 26529780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motif-guided sparse decomposition of gene expression data for regulatory module identification.
    Gong T; Xuan J; Chen L; Riggins RB; Li H; Hoffman EP; Clarke R; Wang Y
    BMC Bioinformatics; 2011 Mar; 12():82. PubMed ID: 21426557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor activity estimation based on particle swarm optimization and fast network component analysis.
    Chen W; Chang C; Hung YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1061-4. PubMed ID: 21096999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational discovery of gene modules and regulatory networks.
    Bar-Joseph Z; Gerber GK; Lee TI; Rinaldi NJ; Yoo JY; Robert F; Gordon DB; Fraenkel E; Jaakkola TS; Young RA; Gifford DK
    Nat Biotechnol; 2003 Nov; 21(11):1337-42. PubMed ID: 14555958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data.
    Chan SC; Zhang L; Wu HC; Tsui KM
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):123-35. PubMed ID: 26357083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Gibbs sampler for the identification of gene expression and network connectivity consistency.
    Brynildsen MP; Tran LM; Liao JC
    Bioinformatics; 2006 Dec; 22(24):3040-6. PubMed ID: 17060361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motif-directed network component analysis for regulatory network inference.
    Wang C; Xuan J; Chen L; Zhao P; Wang Y; Clarke R; Hoffman E
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S21. PubMed ID: 18315853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing genetic networks in yeast.
    Zhang Z; Gerstein M
    Nat Biotechnol; 2003 Nov; 21(11):1295-7. PubMed ID: 14595359
    [No Abstract]   [Full Text] [Related]  

  • 17. GeNOSA: inferring and experimentally supporting quantitative gene regulatory networks in prokaryotes.
    Chen YH; Yang CD; Tseng CP; Huang HD; Ho SY
    Bioinformatics; 2015 Jul; 31(13):2151-8. PubMed ID: 25717191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring gene regulatory networks using differential evolution with local search heuristics.
    Noman N; Iba H
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):634-47. PubMed ID: 17975274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach.
    Boulesteix AL; Strimmer K
    Theor Biol Med Model; 2005 Jun; 2():23. PubMed ID: 15978125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.