BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22641713)

  • 41. Finite width model sequence comparison.
    Chia N; Bundschuh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021906. PubMed ID: 15447514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel method for comparing topological models of protein structures enhanced with ligand information.
    Veeramalai M; Gilbert D
    Bioinformatics; 2008 Dec; 24(23):2698-705. PubMed ID: 18842602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fast and practical algorithms for planted (l, d) motif search.
    Davila J; Balla S; Rajasekaran S
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):544-52. PubMed ID: 17975266
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-similarity combinatorial problems.
    Rubinov AR; Timkovsky VG
    Biosystems; 1993; 30(1-3):81-92. PubMed ID: 8374083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of Hamming distances in a computational model of selection by consequences.
    Popa A; McDowell JJ
    Behav Processes; 2010 May; 84(1):428-34. PubMed ID: 20152891
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computing Nonoverlapping Inversion Distance Between Two Strings in Linear Average Time.
    Wang X; Wang L
    J Comput Biol; 2019 Mar; 26(3):193-201. PubMed ID: 30638400
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Error Tree: A Tree Structure for Hamming and Edit Distances and Wildcards Matching.
    Al-Okaily A
    J Comput Biol; 2015 Dec; 22(12):1118-28. PubMed ID: 26402070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.
    Kinjo AR; Nakamura H
    Methods Mol Biol; 2013; 932():295-315. PubMed ID: 22987360
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient design of bio-basis function to predict protein functional sites using kernel-based classifiers.
    Maji P; Das C
    IEEE Trans Nanobioscience; 2010 Dec; 9(4):242-9. PubMed ID: 20889438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reconstructing strings from substrings.
    Skiena SS; Sundaram G
    J Comput Biol; 1995; 2(2):333-53. PubMed ID: 7497132
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient string similarity join in multi-core and distributed systems.
    Yan C; Zhao X; Zhang Q; Huang Y
    PLoS One; 2017; 12(3):e0172526. PubMed ID: 28278177
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discovering topological motifs using a compact notation.
    Parida L
    J Comput Biol; 2007 Apr; 14(3):300-23. PubMed ID: 17563313
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On complexity of protein structure alignment problem under distance constraint.
    Poleksic A
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):511-6. PubMed ID: 22025757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. String taxonomy using learning automata.
    Oommen BJ; De St Croix EV
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(2):354-65. PubMed ID: 18255876
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reconstruction of a string from substring precedence data.
    Rubinov AR; Gelfand MS
    J Comput Biol; 1995; 2(2):371-81. PubMed ID: 7497134
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inapproximability of (1,2)-exemplar distance.
    Bulteau L; Jiang M
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1384-90. PubMed ID: 24407297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flanked Block-Interchange Distance on Strings.
    Li T; Jiang H; Zhu B; Wang L; Zhu D
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(2):301-311. PubMed ID: 38194376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Local decoding of sequences and alignment-free comparison.
    Didier G; Laprevotte I; Pupin M; Hénaut A
    J Comput Biol; 2006 Oct; 13(8):1465-76. PubMed ID: 17061922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regular language constrained sequence alignment revisited.
    Kucherov G; Pinhas T; Ziv-Ukelson M
    J Comput Biol; 2011 May; 18(5):771-81. PubMed ID: 21554020
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient computation of close lower and upper bounds on the minimum number of recombinations in biological sequence evolution.
    Song YS; Wu Y; Gusfield D
    Bioinformatics; 2005 Jun; 21 Suppl 1():i413-22. PubMed ID: 15961486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.