These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22641776)

  • 1. Cells in the monkey ponto-medullary reticular formation modulate their activity with slow finger movements.
    Soteropoulos DS; Williams ER; Baker SN
    J Physiol; 2012 Aug; 590(16):4011-27. PubMed ID: 22641776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilateral spike-triggered average effects in arm and shoulder muscles from the monkey pontomedullary reticular formation.
    Davidson AG; Schieber MH; Buford JA
    J Neurosci; 2007 Jul; 27(30):8053-8. PubMed ID: 17652596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of pontomedullary reticular formation neurons in horizontal head movements: an ibotenic acid lesion study in the cat.
    Suzuki SS; Siegel JM; Wu MF
    Brain Res; 1989 Apr; 484(1-2):78-93. PubMed ID: 2713704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descending signals from the pontomedullary reticular formation are bilateral, asymmetric, and gated during reaching movements in the cat.
    Schepens B; Drew T
    J Neurophysiol; 2006 Nov; 96(5):2229-52. PubMed ID: 16837662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently.
    Schepens B; Stapley P; Drew T
    J Neurophysiol; 2008 Oct; 100(4):2235-53. PubMed ID: 18632892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of neurons in the medial pontomedullary reticular formation during orienting movements in alert head-free cats.
    Isa T; Naito K
    J Neurophysiol; 1995 Jul; 74(1):73-95. PubMed ID: 7472355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral force transients in the upper limbs evoked by single-pulse microstimulation in the pontomedullary reticular formation.
    Hirschauer TJ; Buford JA
    J Neurophysiol; 2015 Apr; 113(7):2592-604. PubMed ID: 25652926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension.
    Arbuckle SA; Weiler J; Kirk EA; Rice CL; Schieber M; Pruszynski JA; Ejaz N; Diedrichsen J
    J Neurosci; 2020 Nov; 40(48):9210-9223. PubMed ID: 33087474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticoreticular pathways in the cat. I. Projection patterns and collaterization.
    Kably B; Drew T
    J Neurophysiol; 1998 Jul; 80(1):389-405. PubMed ID: 9658059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reticulospinal neurons in the pontomedullary reticular formation of the monkey (Macaca fascicularis).
    Sakai ST; Davidson AG; Buford JA
    Neuroscience; 2009 Nov; 163(4):1158-70. PubMed ID: 19631726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal interneuron circuits reduce approximately 10-Hz movement discontinuities by phase cancellation.
    Williams ER; Soteropoulos DS; Baker SN
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11098-103. PubMed ID: 20534484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus.
    Cowie RJ; Robinson DL
    J Neurophysiol; 1994 Dec; 72(6):2648-64. PubMed ID: 7897481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional properties of monkey motor cortex neurones receiving afferent input from the hand and fingers.
    Lemon RN
    J Physiol; 1981 Feb; 311():497-519. PubMed ID: 7264981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcortical contributions to head movements in macaques. II. Connections of a medial pontomedullary head-movement region.
    Cowie RJ; Smith MK; Robinson DL
    J Neurophysiol; 1994 Dec; 72(6):2665-82. PubMed ID: 7534824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurons in the pontomedullary reticular formation receive converging inputs from the hindlimb and labyrinth.
    Miller DM; DeMayo WM; Bourdages GH; Wittman SR; Yates BJ; McCall AA
    Exp Brain Res; 2017 Apr; 235(4):1195-1207. PubMed ID: 28188328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial inactivation of the primary motor cortex hand area: effects on individuated finger movements.
    Schieber MH; Poliakov AV
    J Neurosci; 1998 Nov; 18(21):9038-54. PubMed ID: 9787008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of medullary reticulospinal neurons by excitation of the dorsolateral parts of the pons which block movement and muscle tone in rats.
    Mileikovskii BY; Kiyashchenko LI; Titkov ES
    Neurosci Behav Physiol; 2000; 30(4):475-80. PubMed ID: 10981952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component.
    Soteropoulos DS; Baker SN
    J Neurosci; 2020 May; 40(20):3933-3948. PubMed ID: 32245828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of evidence for direct corticospinal contributions to control of the ipsilateral forelimb in monkey.
    Soteropoulos DS; Edgley SA; Baker SN
    J Neurosci; 2011 Aug; 31(31):11208-19. PubMed ID: 21813682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arm movements induced by electrical microstimulation in the superior colliculus of the macaque monkey.
    Philipp R; Hoffmann KP
    J Neurosci; 2014 Feb; 34(9):3350-63. PubMed ID: 24573292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.