These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22641851)

  • 1. Characterization and prediction of the binding site in DNA-binding proteins: improvement of accuracy by combining residue composition, evolutionary conservation and structural parameters.
    Dey S; Pal A; Guharoy M; Sonavane S; Chakrabarti P
    Nucleic Acids Res; 2012 Aug; 40(15):7150-61. PubMed ID: 22641851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residue-level prediction of DNA-binding sites and its application on DNA-binding protein predictions.
    Bhardwaj N; Lu H
    FEBS Lett; 2007 Mar; 581(5):1058-66. PubMed ID: 17316627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins.
    Ahmad S; Keskin O; Sarai A; Nussinov R
    Nucleic Acids Res; 2008 Oct; 36(18):5922-32. PubMed ID: 18801847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural changes in DNA-binding proteins on complexation.
    Poddar S; Chakravarty D; Chakrabarti P
    Nucleic Acids Res; 2018 Apr; 46(7):3298-3308. PubMed ID: 29534202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyses on clustering of the conserved residues at protein-RNA interfaces and its application in binding site identification.
    Yang Z; Deng X; Liu Y; Gong W; Li C
    BMC Bioinformatics; 2020 Feb; 21(1):57. PubMed ID: 32066366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying RNA-binding residues based on evolutionary conserved structural and energetic features.
    Chen YC; Sargsyan K; Wright JD; Huang YS; Lim C
    Nucleic Acids Res; 2014 Feb; 42(3):e15. PubMed ID: 24343026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces.
    Tjong H; Zhou HX
    Nucleic Acids Res; 2007; 35(5):1465-77. PubMed ID: 17284455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information.
    Ali F; Ahmed S; Swati ZNK; Akbar S
    J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein-protein binding site by using core interface residue and support vector machine.
    Li N; Sun Z; Jiang F
    BMC Bioinformatics; 2008 Dec; 9():553. PubMed ID: 19102736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analysis of structural determinants for protein-DNA-binding specificity.
    Corona RI; Guo JT
    Proteins; 2016 Aug; 84(8):1147-61. PubMed ID: 27147539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.
    Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS
    J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains.
    Zhang J; Ma Z; Kurgan L
    Brief Bioinform; 2019 Jul; 20(4):1250-1268. PubMed ID: 29253082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins.
    Kuznetsov IB; Gou Z; Li R; Hwang S
    Proteins; 2006 Jul; 64(1):19-27. PubMed ID: 16568445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein binding site prediction using an empirical scoring function.
    Liang S; Zhang C; Liu S; Zhou Y
    Nucleic Acids Res; 2006; 34(13):3698-707. PubMed ID: 16893954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRKAS: knowledge acquisition using a fuzzy rule base approach to insight of DNA-binding domains/proteins.
    Huang HL; Chang FL; Ho SJ; Shu LS; Huang WL; Ho SY
    Protein Pept Lett; 2013 Mar; 20(3):299-308. PubMed ID: 22591472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A boosting approach for prediction of protein-RNA binding residues.
    Tang Y; Liu D; Wang Z; Wen T; Deng L
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):465. PubMed ID: 29219069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences.
    Wang L; Brown SJ
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W243-8. PubMed ID: 16845003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information.
    Cheng CW; Su EC; Hwang JK; Sung TY; Hsu WL
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S6. PubMed ID: 19091029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.