These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22642116)

  • 61. The Performance of Two Supertree Schemes Compared Using Synthetic and Real Data Quartet Input.
    Avni E; Yona Z; Cohen R; Snir S
    J Mol Evol; 2018 Feb; 86(2):150-165. PubMed ID: 29460038
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Weighted quartets phylogenetics.
    Avni E; Cohen R; Snir S
    Syst Biol; 2015 Mar; 64(2):233-42. PubMed ID: 25414175
    [TBL] [Abstract][Full Text] [Related]  

  • 63. SPRIT: Identifying horizontal gene transfer in rooted phylogenetic trees.
    Hill T; Nordström KJ; Thollesson M; Säfström TM; Vernersson AK; Fredriksson R; Schiöth HB
    BMC Evol Biol; 2010 Feb; 10():42. PubMed ID: 20152048
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Efficient Local Search for Euclidean Path-Difference Median Trees.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1374-1385. PubMed ID: 29035224
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reconciliation of gene and species trees.
    Rusin LY; Lyubetskaya EV; Gorbunov KY; Lyubetsky VA
    Biomed Res Int; 2014; 2014():642089. PubMed ID: 24800245
    [TBL] [Abstract][Full Text] [Related]  

  • 66. QDist--quartet distance between evolutionary trees.
    Mailund T; Pedersen CN
    Bioinformatics; 2004 Jul; 20(10):1636-7. PubMed ID: 14962942
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests.
    Abby SS; Tannier E; Gouy M; Daubin V
    BMC Bioinformatics; 2010 Jun; 11():324. PubMed ID: 20550700
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An exact algorithm for the geodesic distance between phylogenetic trees.
    Kupczok A; von Haeseler A; Klaere S
    J Comput Biol; 2008; 15(6):577-91. PubMed ID: 18631022
    [TBL] [Abstract][Full Text] [Related]  

  • 69. PhySIC_IST: cleaning source trees to infer more informative supertrees.
    Scornavacca C; Berry V; Lefort V; Douzery EJ; Ranwez V
    BMC Bioinformatics; 2008 Oct; 9():413. PubMed ID: 18834542
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multiple consensus trees: a method to separate divergent genes.
    Guénoche A
    BMC Bioinformatics; 2013 Feb; 14():46. PubMed ID: 23394478
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reconstructing (super)trees from data sets with missing distances: not all is lost.
    Kettleborough G; Dicks J; Roberts IN; Huber KT
    Mol Biol Evol; 2015 Jun; 32(6):1628-42. PubMed ID: 25657329
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The gene-duplication problem: near-linear time algorithms for NNI-based local searches.
    Bansal MS; Eulenstein O; Wehe A
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(2):221-31. PubMed ID: 19407347
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Supertrees Based on the Subtree Prune-and-Regraft Distance.
    Whidden C; Zeh N; Beiko RG
    Syst Biol; 2014 Jul; 63(4):566-81. PubMed ID: 24695589
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Minimum-flip supertrees: complexity and algorithms.
    Chen D; Eulenstein O; Fernandez-Baca D; Sanderson M
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(2):165-73. PubMed ID: 17048402
    [TBL] [Abstract][Full Text] [Related]  

  • 75. FastRFS: fast and accurate Robinson-Foulds Supertrees using constrained exact optimization.
    Vachaspati P; Warnow T
    Bioinformatics; 2017 Mar; 33(5):631-639. PubMed ID: 27663499
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A supertree pipeline for summarizing phylogenetic and taxonomic information for millions of species.
    Redelings BD; Holder MT
    PeerJ; 2017; 5():e3058. PubMed ID: 28265520
    [TBL] [Abstract][Full Text] [Related]  

  • 77. SaGePhy: an improved phylogenetic simulation framework for gene and subgene evolution.
    Kundu S; Bansal MS
    Bioinformatics; 2019 Sep; 35(18):3496-3498. PubMed ID: 30715213
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Building alternative consensus trees and supertrees using k-means and Robinson and Foulds distance.
    Tahiri N; Fichet B; Makarenkov V
    Bioinformatics; 2022 Jun; 38(13):3367-3376. PubMed ID: 35579343
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Uniqueness, intractability and exact algorithms: reflections on level-k phylogenetic networks.
    Van Iersel L; Kelk S; Mnich M
    J Bioinform Comput Biol; 2009 Aug; 7(4):597-623. PubMed ID: 19634194
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A new algorithm to construct phylogenetic networks from trees.
    Wang J
    Genet Mol Res; 2014 Mar; 13(1):1456-64. PubMed ID: 24634244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.