BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22642149)

  • 21. Electrochemical monitoring of indicator-free DNA hybridization by carbon nanotubes-chitosan modified disposable graphite sensors.
    Erdem A; Muti M; Karadeniz H; Congur G; Canavar E
    Colloids Surf B Biointerfaces; 2012 Jun; 95():222-8. PubMed ID: 22459926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode.
    Dai H; Wang Y; Wu X; Zhang L; Chen G
    Biosens Bioelectron; 2009 Jan; 24(5):1230-4. PubMed ID: 18760586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing.
    Zhang W; Yang T; Zhuang X; Guo Z; Jiao K
    Biosens Bioelectron; 2009 Apr; 24(8):2417-22. PubMed ID: 19167208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine.
    Xing X; Liu S; Yu J; Lian W; Huang J
    Biosens Bioelectron; 2012 Jan; 31(1):277-83. PubMed ID: 22074810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: a comparative study of carbon nanotube and glassy carbon electrodes in [EMIM](+)[EtSO(4)](-).
    Zheng JP; Goonetilleke PC; Pettit CM; Roy D
    Talanta; 2010 May; 81(3):1045-55. PubMed ID: 20298892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon nanotubes as optical biomedical sensors.
    Kruss S; Hilmer AJ; Zhang J; Reuel NF; Mu B; Strano MS
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1933-50. PubMed ID: 23906934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of electrodeposited single-walled carbon nanotube films.
    Kim SK; Choi HY; Lee HJ; Lee H
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3614-8. PubMed ID: 17252822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites.
    Yang T; Zhou N; Zhang Y; Zhang W; Jiao K; Li G
    Biosens Bioelectron; 2009 Mar; 24(7):2165-70. PubMed ID: 19131238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes.
    Yang Y; Wang Z; Yang M; Li J; Zheng F; Shen G; Yu R
    Anal Chim Acta; 2007 Feb; 584(2):268-74. PubMed ID: 17386614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon nanotube-ionic liquid composite sensors and biosensors.
    Kachoosangi RT; Musameh MM; Abu-Yousef I; Yousef JM; Kanan SM; Xiao L; Davies SG; Russell A; Compton RG
    Anal Chem; 2009 Jan; 81(1):435-42. PubMed ID: 19117466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methods for the preparation of electrochemical composite biosensors based on gold nanoparticles.
    González-Cortés A; Yáñez-Sedeño P; Pingarrón JM
    Methods Mol Biol; 2009; 504():157-66. PubMed ID: 19159097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of carbon nanotubes in the twenty-first century.
    Endo M; Hayashi T; Kim YA; Terrones M; Dresselhaus MS
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2223-38. PubMed ID: 15370479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode.
    Salimi A; Compton RG; Hallaj R
    Anal Biochem; 2004 Oct; 333(1):49-56. PubMed ID: 15351279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Research and development of biomedical application of carbon nanotubes and related composites].
    Guo X; Xu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):438-41. PubMed ID: 16706384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode.
    Deng C; Chen J; Wang M; Xiao C; Nie Z; Yao S
    Biosens Bioelectron; 2009 Mar; 24(7):2091-4. PubMed ID: 19084392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surfactant-assisted direct electron transfer between multi-copper oxidases and carbon nanotube-based porous electrodes.
    Ogawa Y; Yoshino S; Miyake T; Nishizawa M
    Phys Chem Chem Phys; 2014 Jul; 16(26):13059-62. PubMed ID: 24871387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes.
    Du F; Huang W; Shi Y; Wang Z; Cheng J
    Biosens Bioelectron; 2008 Nov; 24(3):415-21. PubMed ID: 18585028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly sensitive CNT composite amperometric sensors integrated in an automated flow system for the determination of free chlorine in waters.
    Olivé-Monllau R; Pereira A; Bartrolí J; Baeza M; Céspedes F
    Talanta; 2010 Jun; 81(4-5):1593-8. PubMed ID: 20441944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of surfactant type and redox polymer type on single-walled carbon nanotube modified electrodes.
    Chen J; Tran TO; Ray MT; Brunski DB; Keay JC; Hickey D; Johnson MB; Glatzhofer DT; Schmidtke DW
    Langmuir; 2013 Aug; 29(33):10586-95. PubMed ID: 23859497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of ZnO morphologies on carbon nanotube electrodes and electrocatalytic characteristics toward hydrazine.
    Han KN; Li CA; Bui MP; Pham XH; Seong GH
    Chem Commun (Camb); 2011 Jan; 47(3):938-40. PubMed ID: 21076760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.