These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22642151)

  • 1. [Thermodynamic analysis of dimerization inhibitors binding to HIV protease monomers].
    Ershov PV; Gnedenko OV; Mol'nar AA; Lisitsa AV; Ivanov AS; Archakov AI
    Biomed Khim; 2012; 58(1):43-9. PubMed ID: 22642151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations.
    Ohtaka H; Schön A; Freire E
    Biochemistry; 2003 Nov; 42(46):13659-66. PubMed ID: 14622012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biosensor analysis of interaction of potential dimerization inhibitors with HIV-1 protease].
    Ershov PV; Gnedenko OV; Mol'nar AA; Lisitsa AV; Ivanov AS; Archakov AI
    Biomed Khim; 2009; 55(4):462-78. PubMed ID: 20000124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84V active site resistant mutant.
    Todd MJ; Luque I; Velázquez-Campoy A; Freire E
    Biochemistry; 2000 Oct; 39(39):11876-83. PubMed ID: 11009599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic dynamics of the JE-2147-HIV protease complex: drug resistance and thermodynamic binding mode examined in a 1.09 A structure.
    Reiling KK; Endres NF; Dauber DS; Craik CS; Stroud RM
    Biochemistry; 2002 Apr; 41(14):4582-94. PubMed ID: 11926820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the first nonpeptidic molecular tong inhibitor of wild-type and mutated HIV-1 protease dimerization.
    Vidu A; Dufau L; Bannwarth L; Soulier JL; Sicsic S; Piarulli U; Reboud-Ravaux M; Ongeri S
    ChemMedChem; 2010 Nov; 5(11):1899-906. PubMed ID: 20936621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIV-1 Protease Dimerization Dynamics Reveals a Transient Druggable Binding Pocket at the Interface.
    Pietrucci F; Vargiu AV; Kranjc A
    Sci Rep; 2015 Dec; 5():18555. PubMed ID: 26692118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and synthesis of new inhibitors of HIV-1 protease dimerization with conformationally constrained templates.
    Song M; Rajesh S; Hayashi Y; Kiso Y
    Bioorg Med Chem Lett; 2001 Sep; 11(18):2465-8. PubMed ID: 11549448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations.
    Muzammil S; Armstrong AA; Kang LW; Jakalian A; Bonneau PR; Schmelmer V; Amzel LM; Freire E
    J Virol; 2007 May; 81(10):5144-54. PubMed ID: 17360759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensating enthalpic and entropic changes hinder binding affinity optimization.
    Lafont V; Armstrong AA; Ohtaka H; Kiso Y; Mario Amzel L; Freire E
    Chem Biol Drug Des; 2007 Jun; 69(6):413-22. PubMed ID: 17581235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors.
    Markgren PO; Schaal W; Hämäläinen M; Karlén A; Hallberg A; Samuelsson B; Danielson UH
    J Med Chem; 2002 Dec; 45(25):5430-9. PubMed ID: 12459011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity.
    Velazquez-Campoy A; Todd MJ; Freire E
    Biochemistry; 2000 Mar; 39(9):2201-7. PubMed ID: 10694385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel strategies for targeting the dimerization interface of HIV protease with cross-linked interfacial peptides.
    Bowman MJ; Chmielewski J
    Biopolymers; 2002; 66(2):126-33. PubMed ID: 12325162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing Interconsistent, Reasonable, and Predictive Models for Both the Kinetic and Thermodynamic Properties of HIV-1 Protease Inhibitors.
    Qu S; Huang S; Pan X; Yang L; Mei H
    J Chem Inf Model; 2016 Oct; 56(10):2061-2068. PubMed ID: 27624663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching between allosteric and dimerization inhibition of HIV-1 protease.
    Bowman MJ; Byrne S; Chmielewski J
    Chem Biol; 2005 Apr; 12(4):439-44. PubMed ID: 15850980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular inhibitors of HIV-1 protease. Characterization of designed heterodimers.
    Rozzelle JE; Dauber DS; Todd S; Kelley R; Craik CS
    J Biol Chem; 2000 Mar; 275(10):7080-6. PubMed ID: 10702274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkyl hydroxybenzoic acid derivatives that inhibit HIV-1 protease dimerization.
    Flausino OA; Dufau L; Regasini LO; Petrônio MS; Silva DH; Rose T; Bolzani VS; Reboud-Ravaux M
    Curr Med Chem; 2012; 19(26):4534-40. PubMed ID: 22963666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based thermodynamic analysis of HIV-1 protease inhibitors.
    Bardi JS; Luque I; Freire E
    Biochemistry; 1997 Jun; 36(22):6588-96. PubMed ID: 9184138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sidechain-linked inhibitors of HIV-1 protease dimerization.
    Bowman MJ; Chmielewski J
    Bioorg Med Chem; 2009 Feb; 17(3):967-76. PubMed ID: 18337105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.